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The Volga German kindreds are a group of seven related families with autosomal dominant 
early-onset Alzheimer's disease (AD). Linkage to known AD-related loci on chromosomes 
21 and 14 has been excluded. Significant evidence for linkage to AD in these families was 
obtained with D l  S479 and there was also positive evidence for linkage with other markers 
in the region. A 11 2-base pair allele of DlS479 co-segregated with the disease in five of 
seven families, which is consistent with a common genetic founder. This study demon- 
strates the presence of an AD locus on chromosome 1 q31-42. 

Alzheimer's disease (AD) is genetically 
heterogeneous and complex. As AD is com- 
mon in the elderly (1 ), the clustering of 
cases in a family may occur by chance, 
representing either non-allelic, genetic het- 
erogeneity or etiologic heterogeneity (with 
genetic and non-genetic cases co-existing 
in the same kindred). In addition, the clin- 
ical diagnosis of AD is confounded by other 
dementing diseases, particularly those com- 
mon in the elderly. Mutations in the amy- 
loid precursor protein (APP) gene on chro- 
mosome 21 cause early-onset (<65 years) 
autosomal dominant AD (2). Mutations in . . 
a gene AD3 on chromosome 14 also result 
in early-onset autosomal dominant AD (3). 
For late-onset AD, the APOE €4 allele 
elevates risk for AD, possibly by reducing 
the age of onset, whereas the €2 allele may 
be protective (4-7). Gene-gene interac- 
tions lnav also occur in AD: the aee of onset 

all cases of AD. In the Volga German (VG) 
kindreds (9),  as in several other families 
(10) in which AD appears to be inherited as 
an autosomal dominant tralt, the known 
AD loci have been excluded (3, 10-14). 
The VG families are a group of related 
kindreds with AD onset age means ranging 
from 50.2 to 64.8 years (Table 1). German 
immigrants in Russia, they remained cultur- 
ally distinct and did not intermarry with the 
surrounding population (9). Numerous af- 
fected subjects in these families have been 
characterized, both clinically and neuro- 
pathologically (9)  and at least one affected 
subject from each family has had autopsy 
confirmation of the diagnosis of AD. Ex- 
cept for the relat~vely early age of onset, AD 
in the VG is clinically and pathologically 
indlstingulshable from typical AD. 

AD in these families as linkage analysis 
with a hiehlv informative short tandem re- 
peat polyko;phism (STRP) in the APOCII 
locus, located within 30 kb of AooE, vields . ,  
negative linkage results under a number of 
different models (14). Although APOE €4 - 
allele frequency in affected VG subjects is 
elevated relative to Caucasian controls 
(0.33 versus 0.15), the €4 frequency in VG 
spouses is also elevated (0.28) suggesting 
that the frequency of €4 may be high in the 
VG population (14, 15). The APOE geno- 
type does not appear to influence the age of 
onset in these kindreds (15). 

DNA was prepared from lymphoblastoid 
cell lines from 139 individuals in the VG 
families, including 37 affected subjects. 
When suggestive evidence for linkage was 
found, autopsy-derived tissue, either frozen 
or embedded in paraffin, was used to pre- 
pare DNA from eight additional affected 
subiects for whom no other tissue was avail- 
able. Markers on all chromosomes were 
genotyped (16) and analyzed by the loga- 
rithm of the likelihood ratio for linkage (lod 
score) method ( 1  7). For the genome screen, 
evidence for linkage was evaluated under 
the assumption of autosomal dominant in- 
heritance with age-dependent penetrance 
and a 0% sporadic rate. Lod scores were also 
computed by a low (1%) penetrance model, 
which makes no assumption about the dis- 
ease status of at-risk individuals and thus 
serves as a check that information about 
linkage was based primarily from the affect- 
ed individuals (in whom the genotype at 
the disease locus is more accuratelv known 
compared to that of at-risk subjecis). Pub- 
lished marker allele frequencies (1 8) were 
used unless critical allele frequencies were 
significantly lower than those estimated in 
the VG, in which case frequencies based on 

of AD caused by the ~ ~ ~ ' ~ ' a l ~ ' ~ m L l t a t i o l l  Table 1. VG kindreds used for Ihnltage analysis. Families were evaluated as described (9) 
may be modified by APOE genotypes (8). 
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all subjects In the VG pedigrees (affecteds, 
at-risk, and spouses) were used. This con- 
servative approach was taken during screen- 
ing as underestimation of the frequency of 
an allele co-segregating with the disease can 
cause false positive evidence for linkage 
(19). However, this approach will underes- 
timate lod scores if the true allele frequency 
is lower than assumed. In this study, 162 
markers were genotyped (1 6). Among these 
were 70 STRP markers with heterozygosity 
values mostly >0.70, spaced 2 2 0  cM apart. 

Initial suggestive lod scores for chromo- 
some 1 were obtained for markers DlS103, 
for which the peak lod score (Z,n,x) was 
1.79 when the maximum likelihood esti- 
mate of the recombination fraction) ( A )  was 
0.10) and D1S249 (Z,,,, = 1.76, 4 = 0.20; 
Table 2), which are separated by approxi- 
mately 26 cM (20). Subsequently, 21 other 
markers in this region spanning 55 CM were 

analyzed (Table 2). When the conservative 
screening analysis conditions were used, sig- 
nificant evidence for linkage (Z,,,ax 2 3.0) 
was obtained with DlS479 (Z,n,x = 4.40, 8 
= 0.11); this lod score was similar to that * 

predicted by earlier power analyses (21). 
Most of the evidence for linkage comes 
from families HB and R, with positive lod 
scores also observed for families H, W,  and 
HD (Table 3). Other markers in the region 
also gave pos~tive though non-significant 
lod scores (for example, DlS439, Z,,,, = 

2.82, 6 = 0.17; D1S320, Z = 1.87, 
A = 0.19; DlS103, Z,,,, = 2.40, A = 0.08; 
Table 2). 

In the VG pedigrees, genotypes are not 
available from many deceased individuals 
who connect sampled subjects (for example, 
all individuals in generations 1-111 in Fig. 
I ) .  Because of this missing data problem, 
marker allele frequencies can influence 

Table 2. Lod scores for linkage of FAD to chromosome 1 markers. Genotypes were performed by 
conventional methods (76). All genotypes for D l5479  were determined in duplicate. For markers 
D l  5439, D l  S479, and D l  5225 genotypes were determined for eight samples from affected subjects 
either derived from either paraffin blocks or frozen brain material (not all samples amplified with all 
markers). Other markers genotyped that are not shown are D l  S238. D l  5422, D l  S412, D l  S306, 
D lS310,  DlS245. DlS205, D15425, DlS217. DlS229, DlS227, DlS320, DlS213, DlS251, 
DlS103, D l  S459, DlS446, and DlS235. Lod scores were computed with the assumption of 
age-dependent penetrance (1 7). 

Recombination fraction (8) 
Locus HeL-1- 

0,001 0.05 0.10 0.1 5 0.20 0.30 0.40 

*Lod scores were computed with published a lee frequences ( 7  7) except for DlS479 For t hs  marker, the a lee 
frequency for the 1 1  2-bp a lee was derived from the VG subjects as a group ';-Het.. heterozygosity. 

Table 3. F a m y  lod scores for linkage of AD to D l  S479. For the DlS479 112-bp allele. o d  scores were 
computed with either the frequency from the VG group or from controls. For the H, HB, and R families, 
maximum o d  scores were obtalned with DlS479. No marker was positlvefor the WFL family unnder any 
condition. Under the low (1 %) penetrance model, Z,,, values were 3.27 (0 = 0.08) and 1.49 (0 = 0.12) 
for the control and VG allele frequences, respectvey. 

Recombination fracton (8) 
Frequency 

(I 12-bp ae'ei  0.001 0,05 0.10 0.15 0 2 0  0 3 0  0 4 0  

H 

H B 

H D 

KS 

R 

W 

WFL 

Totals 

VG 
Control 
VG 
Control 
VG 
Control 
VG 
Control 
VG 
Control 
VG 
Control 
VG 
Control 

VG 
Control 
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linkage analysis results. For most of the 
markers used, allele frequencies in the VG 
families were similar to those from controls. 
However, for D1S479, the 112-bp allele, 
which segregated with AD in most of the 
subjects in five of the families (H, HB, HD, 
R, and W) ,  was substantially more frequent 
in the affected subjects compared to in con- 
trols (0.32 in affected subjects, 0.18 in all 
VG subjects, and 0.04 in controls) (22). 
Such an increase in frequency for a closely 
linked marker allele is expected, as sam- 
pling of multiplex families is likely to re- 
sult in over-representation of one or more 
specific alleles in affected and at-risk sub- 
jects, but not in spouses who should be 
representative of the sampled population. 
This is especially true in the case of a 
founder effect, in which the same allele is 
expected to segregate with the disease in 
most of the families. This hypothesis is 
supported by the fact that 112-bp allele 
of D1S479 has a frequency of 0.03 in 
the VG spouses, a frequency similar to 
that observed in controls (0.04). Thus, the 
allele frequencies from the controls and 
the VG spouses may more accurately re- 
flect the appropriate D1S479 allele fre- 
quencies for use in lod score computations. 
When control frequencies were used for 
the 112-bp DlS479 allele, the maximum 
lod score for DlS479 increased from Zmax 
= 4.40 (8  = 0.11) t o 2  ,n,x = 6.29 ( A  = 

0.10) (Table 3).  
Linkage analysis can be confounded by 

the presence of phenocopies (non-AD de- 
mentia cases or AD caused by something 
other than the major gene segregating in 
these families). As the onset ages for AD in 
the VG families extend up to 82 years (Ta- 
ble I ) ,  and because late-onset AD is com- 
mon, some of the late-onset cases may be 
"sporadic" AD or phenocopies. To correct 
for this possibility, lod scores were calculat- 
ed (1 2, 17) by a genetic model in which we 
assume that as the age of onset of a subject 
increases, the probability that the individ- 
ual represents a phenocopy increases (23). 
Despite the fact that In the absence of true 
phenocopies this model reduces the power 
to detect linkage (24) for all markers ana- 
lyzed, the lod scores increa~seq, $25). These 
results support the hypothes~s that at least 
some AD cases in these fa~qligs are pheno- 
copies. 

Haplotypes wrre constructed for the R 
family with the 23 markers spanning approx- 
~mately 55 cM of chromosome 1 (Fig. 1). A 
colnlnon haplotype between D1S238 and 
D1S235 was observed in all but one of the 
affected subjects (IV-1, Fig. 1). This individ- 
ual did not share the disease haplotype across 
the entlre region, had an age of onset of 67 
years which is greater than 2 standard devi- 
ations above the family mean, and had an 
€414 genotype at the APOE locus. Thus this 



suhject may be a phenocopy. In other fain- 
lies, definite assignment of a common dis- 
ease haplotype was iiiffic~llt hecause of miss- 
ing data and will require extensive multi- 
point analysis (26). However, for DIS479, 
the 112-bp allele segregated with the iiisease 
in the H ,  HB, HD, W, and R pedigrees. In 
the H D  family, the one affectecl subject who 
Jid not have the 112-hp allele, had an age of 
onset of 75 years and was €31~4 at the APOE 
loc~ls. However, age of onset alone cannot he 
~lsed to u ~ ~ n i g ~ o ~ s l y  deterlnine whether a 
subject is a phenocopy. I11 the HB family, 
suhjects with onsets of LIP to 75 years shared 
the DlS479 112 allele w ~ t h  other younger 
affected suhjects. The KS family is the only 
VG kindred in which 110 affected subject had 
the DlS479 112-bp allele. Analysis of thts 
family is complicated because of the late age 
of onset (64.8 years) and because of the eight 
affected suhjects three were APOE €41~4 

i 

R family 

holnozygotes (onset ages of 57, 58, and 67 
years) and four were €4 heterozygotes (onset 
ages 67, 68, 68, and 71 years). Th~ls ,  the KS 
family could be an example of genetic het- 
erogeneity w ~ t h i n  the VG kindreds, al- 
though w~thin-group heterogeneity tests i i~ i i  
not detect heterogeneity ( 1  7) .  However, the 
finding of the same rare allele segregating 
w ~ t h  A D  111   no st of the VG pedigrees sup- 
ports the l~ypothes~s of a cornlnon genetlc 
founder for most of the families. 

The data presented here detnonstrate 
the presence of an A D  loc~ls at 11131-42. 
Analysis of recolnbinants in the R family 
ilef~ne the ca~liiidate region as between 
DlS225 (subjects V-1 and V-3) and 
DlS217 (subject IV-16) 111 Fig. 1, a region 
spanning 14 cM. Even though the VG locus 
may be a rare cause of AD, tdentificat~on of 
the responsible gene will be i~nportant for 
understanding ,4D pathogenesis, just as 

Affected, onset at 45 years 

'-, Unaffected, currently 85 years old 

# Affected, autopsy conf~rrnatlon of AD 

'2 Unaffected, d~ed at 42 years 

Fig. 1. Segregation of chromosolne 1 markers In the R f a l n y ,  The bars beneath each subject represent 
m n m u m  recombinant haplotypes constructed u s n g  the 23 markers from D l  5238  to D l  S235 (Table 2). 
Alleles shown, from top  to bottom, are for D1S249, D l  S237, D l  5479, D l  S439, and D l  S225; size of the 
pariicular allele is represented by the letter of the alphabet. The solid bar represents the hapotype 
segregating wlth the disease. Other haplotypes are represented by bars wlth different hatching or 
marking. A pariialy missing bar indicates markers not genotyped (subject IV-15). A "-" symbol repre- 
sents regons where the phase cannot b e  assigned. APOE genotypes are shown directly above the 
haplotypes with 2 ,  3 ,  and 4 representing the €2. €3, and €4 alleles, respectively Recombinants were 
observed on the disease hapotype between D l  S479/D1 S439 and D l  5225  in subjects V-1 and V-3, and 
between D l  5306  and D l  S310 In subject IV-18 In IV-16 there IS a recombination between D l  S217 and 
D1S237 Although this subject is D/E at D1S249, and D IS the allele segregating with the disease 
elsewhere in the pedigree, haplotype analysis of five markers centromeric to  (above) D1S249, and four 
markers between D l  5249  and D l  5237,  strongly suggests that the D allele I S  on  the haplotype IV-16 
Inherited from the nonaffected parent. A total of four recombinations (three on chromosomes not related 
to the dsease) were observed between D1S249 and D l  5237  In the 27 chromosomes In generation IV. 
The dstance between these markers I S  12 c M  and t i le chance that u p  to four recombinants would be  
observed is 41 The pedigrees have been altered t o  protect confidentiality and not all subjects 
genotyped are shown. Subject IV-5 died of pancreatic cancer and was repotted demented by some 
family members, but not others. This subject was considered affected forthe analyss. If this subject does 
not actually have AD (a lnisclassif~cation). the Z,,,,,, would be  higher than shown in Tables 2 and 3 .  

identification of rare APP mutations has 
lead to a greater understanding of the role 
of APP processing in A D  (27) and has 
resulted in the first animal model of A D  
(28). 
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Candidate Gene for the Chromosome 1 Familial 
Alzheimer's Disease Locus 

Ephrat Levy-Lahad," Wilma Wasco," Parvoneh Poorkaj, 
Donna M. Romano, Junko Oshima, Warren H. Pettingeil, 

Chang-en Yu, Paul D. Jondro, Stephen D. Schmidt, Kai Wang, 
Annette C. Crowley, Ying-Hui Fu, Suzanne Y. Guenette, 

David Galas, Ellen Nemens, Ellen M. Wijsman, Thomas D. Bird, 
Gerard D. Schellenberg,-I- Rudolph E. Tanzi 

A candidate gene for the chromosome 1 Alzheimer's disease (AD) locus was identified 
(STM2). The predicted amino acid sequence for STM2 is homologous to that of the 
recently cloned chromosome 14 AD gene (S182). A point mutation in STM2, resulting in 
the substitution of an isoleucine for an asparagine (N1411), was identified in affected 
people from Volga German AD kindreds. This N1411 mutation occurs at an amino acid 
residue that is conserved in human S182 and in the mouse S182 homolog. The presence 
of missense mutations in AD subjects in two highly similar genes strongly supports the 
hypothesis that mutations in both are pathogenic. 

Alzheimer's disease is the most colnInoIl 
cause of deme~ltia in the elderly. T h e  patho- 
genic pathway leading to ~leurodegelleration 
and A D  is not well u~derstood. However, at 
least some forrns of the disease have a genetic 
etiology. For autosomal dominant, early-onset 
(<65 years) AD, causative mutations have 
been identified in the arnyloid precursor pro- 
tein (APP) gene on chrornosorne 21 (1 ) ,  and 
mutations that segregate with familial A D  
(FAD) have bee11 identified in S182, a strollg 
candidate gene for the chromosome 14 AD3 
locus (2). In addition to these lnajor gene 

effects, the €4 allele of the apolipoprotein E 
(APOE) gene rnodifies the risk of developing 
some forrns of AD, possibly by lowering the 
age of onset (3). A third autosomal dorninallt 
locus, responsible for A D  in the Volga Ger- 
Inan (VG) kindreds, has been recelltly local- 
ized to chro~noso~ne 11131-42 (4). Icientifica- 
tion of this locus was colnplicated by the 
overlap in the ages of onset of the affected VG 
subjects with late-onset AD,  which is a corn- 
I ~ O I I  disease; thus, potential phenocopies, pre- 
sumably a result of etiologic (genetic and non- 
genetic) heterogeneity, were observed among . - 

the affected VG subjects (4)., 
E. Levy-Lahad, P. Poorkaj, J. Oshma, C.-E. Yu, E. Ne- 
mens. G. D. Schellenberg, Geriatric Research, Educa- 

Nine VG families were used in this s t ~ ~ d y  

tion, and Clinical Center 1182B1, Veterans Affairs Medical (Fig. 1). T h e  ancestors of th~se,families illl- 
Center 1660 South Coumban Way, Seattle WA 98108, migrated from the Hesse region of Germany 
USA. to Russia in the 1760s and subsequently to 
W. Wasco, D. M. Romano, W. H. Pettingell, P. D. Jondro. 
S. D. Schmidt, A. C. Crowey S. Y. Guenette, R. E. Tanzi States a t  the tL1nl of the 20th 
Genetics and Aqinq Unit, Massachusetts General Hospi- century (5). T h e  families were ascertained as 
tal, ~har lestowi ,  MA 021 29, USA. part of our larger genetic linkage studies 
K. Wang Y.-H. Fu. D. Galas, Darwin Molecular, Bothell, 
WA 98021. USA. because they contained multiple cases of au- 
E. M. Wiisman. Division of Medlcal Genetics. Deoartment to~sv-documented A D  occurring in two or 

& ,  

of Medldine and Department of Biostatistics, university of Inore generations. Families withuboth early. 
Wash~ngton, Seattle, WA 981 95, USA. 
T. D. Bird, Div~sion of Neurology, Veterans Affairs Medlca and AD cases De- 
Center, Seattle, WA 98108, USA. tailed clinical, neuropathologic, and genetic 

'These authors contributed equally to this work. studies of these families have been published 
-IT0 whom correspondence should be addressed. elsewhere (6 ,  7). 
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