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tal rotation process as the orderly rotation 
of the neuronal population vector (4) from 
a stimulus to a movement direction, 
through successive directions within a spec- 
ified angle. This rotation exemplified the 
spatial rule operating in the mental rotation 
task, which required the production of a 
movement at an angle from a stimulus di- 
rection. In the present study, we sought 
instead to determine the neural correlates 
of a cognitive process, the rule of which was 
based not on a spatial constraint but on the 
serial position of stimuli in a sequence: Giv- 
en an arbitrary sequence of stimuli on a 
circle, one of which was identified as the 
test stimulus, the motor response had to be 
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underlying cognitive processing is a basic a powerful tool by which these mechanisms 'Present address: Department of Ps+ichdogy, St. Olaf 
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goal of behavioral neuroscience ( I ) .  The can be studied. In a previous study (2, 3), us. 
recording of the activity of single cells in we identified the neural correlates of a men- 6 whom correspondence should be addressed. 

Control task Fig. 1. Schematic diagram of two tr i is of the tasks used. In the 
control task (top), the yellow stimulus S changed to blue after 400 
ms, which gave the go signal. The correct motor response was in 
the direction of this stimulus. In the context-recall task (bottom), 
three yellow stimuli (S1 , S2, and S3) were presented sequentially 
at 400-ms intervals and stayed on the screen; these stimuli de- 
fined the sequence for this trial. In this trial, S2 changed to blue, 
which now dictated a motor response toward S3. 

V 

context-recall task 

rS1 

Response 
S3 

S1 
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toward the stimulus that followed the test 
stimulus in the sequence. This task is a 
visuomotor version (5, 6) of the context- 
recall memory scanning task (7). Previous 
psychophysical studies (6) have suggested 
that the processing mechanisms differ be- 
tween the mental rotation and context- 
recall tasks. In order to determine the neu- 
ral mechanisms in the latter task, we re- 
corded the activity of single cells in the 
motor cortex of a monkey trained to per- 
form a context-recall and a control, in- 
structed delay task (8). Moreover, we rean- 

alyzed the neural data from the mental ro- 
tation study (3) to compare them with 
those obtained in the present study. 

In the control task (Fig. 1, top panel), a 
yellow stimulus was presented in one of 
eight positions on a circle and stayed on for 
400 ms, after which it turned blue. This 
provided the go signal for the monkey to 
exert a force pulse such that the force feed- 
back cursor (8) exceeded a certain thresh- 
old (9). In the context-recall task (Fig. 1, 
bottom panel), three   ell ow stimuli (list 
stimuli) were presented successively (every 
400 ms) at different positions on the circle 
and stayed on the screen. After an addition- 
al 400 ms, one of these stimuli (except the 
last) turned blue. This identified the test 
stimulus, and provided the go signal: Now 
the monkey had to move the cursor in the 
direction of the stimulus that followed the 

Fig. 2. Rasters of impulse activity of a motor cor- 
tical cell are shown for eight directions in the con- 
trol task. The rasters shown start 250 ms before 
the appearance of the stimulus (S or S1) and end 
when the cursor exceeded a threshold (9). The 
times of occurrence of the stimuli (S), of the go 
signal (Go) and the average time of the onset of 
the motor respmse (R) are shown as long vertical 
lines. (The standard deviation of the resoonse 

test stimulus in the sequence (10). 
The activity of 544 single cells in the 

motor cortex was recorded while the mon- 
key performed these two tasks (1 1). The 
impulse activity of a cell for the eight di- 
rections in the control task is shown in Fig. 
2. This cell was mostlv activated with a 
downward direction and therefore provided 
a good marker for that direction. This mark- 
er was in turn used as an indicator of the 
directional information processed during 
the response time (9) in the context-recall 
task. Cell activity during two conditions of 
this task are illustrated in the left and right 
panels of Fig. 3. In both conditions, the 
motor responses were in the same down- 
ward direction and the test stimuli (blue) 
were in the same location (up and to the 
left). However, these stimuli differed in 
their serial position in the sequence, which 
provided the meaningful information for 
correct performance of the task; namely, in 
the left panel the test stimulus was the first 
stimulus (Sl) in the sequence, whereas in 
the right panel the test stimulus was the 
second stimulus (S2) in the sequence. This 
difference in the serial position of the test 
stimuli, and the associated motor responses, 
was reflected in the different patterns of cell 
activity during the response time. In the left 

panel of Fig. 3, the cell was activated almost 
at the onset of the go signal (12), and its 
activation indicated the downward direc- 
tion, toward S2. This suggests that the 
monkey anticipated and prepared for such a 
response, which was the appropriate one in 
this case. In contrast, in the right panel, this 
activation did not occur until later in the 
response time, which indicates that the 
monkey did not anticipate this direction 
initially but switched to it 100 to 150 ms 
after the go signal. Fig. 4 illustrates data 
from another cell. These effects were rou- 
tinely observed in other cells. 

This switching process was visualized at 
the ensemble level with the use of the 
neuronal population vector, computed as a 
time-varying signal (2, 3, 13). When the 
response anticipated did not have to 
change, the population vector pointed in 
the appropriate direction throughout the 
response time. In contrast, when the re- 
sponse had to be changed, the population 
vector changed direction abruptly, from the 
direction of the test stimulus to the direc- 
tion of the motor response (1 4). 

The use in this study of the patterns of 
single-cell activity as markers for behavior 
is similar to the strategy followed by other 
investigators (15). This approach, together 
with the population vector, indicated that 
task constraints were reflected in the neural 
events and provided evidence for the kind 
of process involved in the selection of the 
appropriate motor response. For example, a 
significant task constraint was that the sec- 
ond stimulus. unlike the first or the third. 
played a role in every trial by being either 
the test stimulus or the response direction. 
Therefore, it is not surprising that it was 
routinely anticipated at the onset of the 
response time (16). On the other hand, 
these patterns of neural activity reflecting 
the direction of the second stimulus 
changed abruptly to those appropriate for 
the motor response. This change was evi- 
dent at both the single-cell and the neuro- 
nal population levels (1 7). 

The abrupt change in the direction of 
the neuronal population vector observed in 

time is'indicated by a horizontal bar over d.) The Fig. 3. Rasters of impulse activity of the cell illustrated in Fig. 2 for two cases of the context-recall task. 
Go-R time is the response time. Conventions and time scale are as in Fig. 2. 

SCIENCE VOL. 269 4 AUGUST 1995 703 



the present study is quite different from the 
slow rotation observed in a previous study 
of mental rotation (2, 3, 18). Additional 
evidence for the different nature of the two 
neural processes was provided by the follow- 
ing analysis. The idea is that in a rotation 
process, the set of cells with preferred direc- 
tions in the intermediate direction between 
the stimulus and response directions should 

change activity during the response time. In 
contrast, a switching operation such as pos- 
tulated for the context-recall task should 
not involve the activation of cells in direc- 
tions intermediate between the test stimu- 
lus (S2) and motor response (S3). Indeed, 
this was observed (Fig. 5). It seems then 
that the time taken to derive the motor 
direction in the mental rotation task re- 

Fig. 4. Peristimulus histograms of a c t i i  of a motor cortical cell are shown for eight directions in the 
control task (left) and for one case of the context-recall task (right). In the left panel, histograms of cell 
activity are color coded for motor responses in dierent directions in the control task. In the right panel, 
two of these histograms are reproduced as thinner lines together with the histogram (black) of cell activity 
in the condition of the context-recall task illustrated at the top. After the go signal, cell activity (black) 
initially increased in the same way as in the control case (thin red line) for the direction toward the test 
stimulus (S2) and then changed abruptly and decreased to the level corresponding to the control activity 
for the direction of the motor response (toward S3). 

Fg. 5. Peristimulus time his- 
tograms (bin width, 10 ms) 
ofthe activity of cells with 
preferred direction at the in- 
termediate direction (? 1 0") 
between the stimulus and 
movement directions in the 
mental rotation task (2, 3, i , 

End 

flects a transformation, whereas the time 
taken in the context-recall task reflects a 
selection process. Finally, it should be noted 
that these studies provide an insight into 
the neural mechanisms of these processes in 
a particular brain area, namely the motor 
cortex, but it is obvious that other brain 
areas are likely to be involved. Additional 
experiments are needed to delineate the 
identification of such areas and elucidate 
their relative contributions to the perfor- 
mance of the task. 

and between the test stimu- 8 
lus (S2) and motor response 5 
(S3) task (20). in the Histograms context-recall start a 1 at the onset of the go signal 
(time zero). In the mental ro- 
tation task, the activity of o 
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nations were used during training of the animal in the 

such cells (thin line) in- o 100 m 300 

creased by more than three- - 
fold and was statistically significant (indicated by asterisks), whereas in the context-recall task cell activity 
remained almost constant (thick line) and was not statistically significantly dierent, as compared with cell 
a c t i i  during the first 80 ms (dotted line; baseline period) (21). The arrows indicate the average time 
(TSD) at which the population vector began to change direction (begin) and when it attained the direction 
of the motor response (end) (22). 

context-recall task. ~e&use thetest stimulus could 
be the first or the second stimulus (serial position) in 
a combination, a total of 672 conditions were imple- 
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