rp23 appeared as the expected 23-kD bands, whereas the glycine eluate did not have biologic activity or a protein band (Fig. 3B). With the use of p23-based primers, analyses by Northern (RNA) blot and by reverse transcription polymerase chain reaction (RT-PCR) indicated that mRNA for the IgE-dependent HRF was ubiquitous: It was found in B cells, T cells, mononuclear cells, and fibroblasts. The transcript could not be detected, however, in isolated human skin mast cells or in the rat basophilic leukemic cell line.

Efforts to identify an IgE-dependent HRF have occupied several laboratories for the past decade. Now that it is characterized, we expect that this molecule, which is linked to the intensity of the LPR (17) and to the severity of atopic dermatitis in children (10). will allow us to better understand the pathogenesis of human allergic disease and to appreciate the nature and significance of the heterogeneity of IgE, which may be a genetically determined polymorphism, may be due to differential glycosylation of the IgE molecule, or may be based on interactions with the alternatively spliced forms of human IgE reported to be present in human atopic serum by Zhang et al. (18). Efforts are ongoing to decipher whether this molecule interacts solely with IgE or, additionally, binds to its own receptor.

REFERENCES AND NOTES

- 1. R. M. Naclerio et al., N. Engl. J. Med. 313, 65 (1985).
- 2. M. C. Liu et al., Am. Rev. Respir. Dis. 144, 51 (1991);
- T. Koshino *et al.*, *Clin. Exp. Allergy* **23**, 919 (1993). 3. D. O. Thueson, L. S. Speck, M. A. Lett-Brown, J. A.
- Grant, J. Immunol. **123**, 633 (1979). 4. J. A. Warner, M. M. Pienkowski, M. Plaut, P. S.
- Norman, L. M. Lichtenstein, ibid. 136, 2583 (1986).
- 5. S. M. MacDonald *et al.*, *ibid.* **139**, 506 (1987).
- 6. C. A. Dahinden et al., J. Exp. Med. 179, 751 (1994).
- 7. R. Alam et al., J. Clin. Invest. 89, 723 (1992).
- P. Kuna, S. R. Reddigari, D. Rucinski, J. J. Oppenheim, A. P. Kaplan, *J. Exp. Med.* **175**, 489 (1992).
- S. M. MacDonald, R. P. Schleimer, A. Kagey-Sobotka, S. Gillis, L. M. Lichtenstein, *J. Immunol.* **142**, 3527 (1989).
- H. A. Sampson, K. R. Broadbent, J. Bernhisel-Broadbent, N. Engl. J. Med. 321, 228 (1989).
- S. M. MacDonald, in Allergy. Principles and Practice, E. Middleton, E. F. Ellis, N. F. Adkinson, J. W. Yunginger, W. W. Busse, Eds. (Mosby Yearbook, St. Louis, MO, 1993), pp. 1–11.
- C. Sundstrom and K. Nilsson, Int. J. Cancer 17, 565 (1976).
- S. T. Chitpatima, S. Makrides, R. Bandyopadhyay, G. Brawerman, *Nucleic Acids Res.* 16, 2350 (1988).
- 14. H. Böhm et al., Biochem. Int. **19**, 277 (1989); H. Böhm et al., Biomed. Biochim. Acta **12**, 1193 (1991).
- A. Rubartelli, F. Cozzolino, M. Talio, R. Sitia, *EMBO J.* 9, 1503 (1990); K. A. Hogquist, M. A. Nett, E. R. Unanue, D. D. Chaplin, *Proc. Natl. Acad. Sci. U.S.A.* 88, 8485 (1991).
- 16. D. B. Smith and K. S. Johnson, *Gene* **67**, 31 (1988). 17. O. Iliopoulos et al., J. Allergy Clin. Immunol. **79**, 253
- (1987). 18. K. Zhang, A. Saxon, E. E. Max, J. Exp. Med. **176**,
- 233 (1992). 19. S. C. March, I. Parikh, P. Cuatrecasas, *Anal. Bio-*
- chem. 60, 149 (1974); R. Axen, J. Porath, S. Ernback, *Nature* 214, 1302 (1967).
 20. Native material from the U937 macrophage cell line,
- 20. Native material from the U937 macrophage cell line, human recombinant HRF (rp23), mouse recombi-

nant HRF (rp21), and SEEBLUE prestained molecular weight markers (Novex, San Diego, CA), were run on a 4 to 20% tris glycine gradient gel (Novex) by an established method [U. K. Laemmli, *Nature* **227**, 680 (1970)]. The gel was blotted onto nitrocellulose. A rabbit polyclonal antibody generated against rp21 was used as a primary antibody, and the proteins were visualized with goat IgG to rabbit IgG, coupled to alkaline phosphatase. The additional bands that appeared in the lanes containing rp21 and rp23 were caused by nonspecific binding of the antiserum to *E. coli* proteins. The antibody recognizes a 23-kD band in each preparation, corresponding to the native HRF from the U937 line, to 0.04 μ g of rp21, and to 0.14 μ g of rp23.

- 21. The following primers were used to amplify the p21 cDNA from the Okayama-Berg vector: 5' primer, 5'-AAAAGGATCCATGATCATCTACCGGGACC-3'; 3' primer, 5'-AAAGAATTCTTAACATTTCTCAT-CTCTAAGCC-3'. The resultant PCR product was restricted with Bam HI and Eco RI, ligated in frame with GST into the pGEX-2T plasmid, and transfected into JM109 competent cells (Promega). Production and purification of the recombinant GST fusion protein were done by means of affinity chromatography on immobilized glutathione (*16*). To separate p21 from GST, the GST p21 fusion protein was cleaved with thrombin with the use of the Pharmacia bulk GST purification module.
- 22. Partial purification of NP HRF was as previously described (5). After informed consent, peripheral blood was obtained from participants by venipuncture. Mixed leukocytes containing basophils were prepared by dextran sedimentation as previously described [R. P. Schleimer et al., J. Immunol. 128, 1632 (1982)]. Histamine release was done by a standard method (5), and histamine was measured by means of an automated fluorometric method [R. P. Siraganian, J. Immunol. Meth. 7, 283 (1975)].
- A lactic acid method [J. J. Pruzansky et al., J. Immunol. 131, 1949 (1983)] was used to dissociate IgE from basophils. Passive sensitization was accom-

plished as described [D. A. Levy and A. G. Osler, *ibid.* **97**, 203 (1966)]. After addition of the stimuli, the released histamine was measured as described above.

- 24. PBMC were isolated with the use of lymphocyte separation media (Ficoll-Paque, Pharmacia), and 5 × 10⁶ cells per milliliter in 80 ml were stimulated with concanavalin A (5 µg/ml) (Sigma) for 24 hours at 37°C in 5% CO2. Supernatants were harvested, centrifuged, dialyzed against a Pipes buffer, concentrated 26-fold, and placed on 5 ml of cyanogen-activated Sepharose CL-4B (19) beads covalently coupled to IgG anti-human p23 (1 mg/ml). The affinity column was washed with four column volumes of phosphatebuffered saline starting buffer, followed by two column volumes of 0.1 M glycine (pH 3) and then two column volumes of 5 M guanidine. The eluates were concentrated 100-fold and tested for basophil histamine-releasing activity as described above. Starting material from the concentrated PBMC supernatants, glycine eluate, guanidine eluate, human recombinant HRF (rp23), and SEEBLUE molecular weight markers were run on a 4 to 20% tris-glycine gradient gel as described above (20). The gel was blotted onto nitrocellulose (Schleicher and Schull, Keene, NH). A rabbit IgG polyclonal antibody generated against rp23 was the primary antibody, and a goat IgG to rabbit coupled to alkaline phosphatase was the secondary antibody. The protein immunoblot was developed with the use of enhanced chemiluminescence according to the manufacturer's instructions (Amersham).
- 25. We thank M. Koots and G. Brawerman (Tufts University, Boston, MA) for supplying p21 cDNA that was isolated from a mouse L cell library, Immu-Logic Corporation for NH₂-terminal sequencing of the four polyvinylidene difluoride transferred bands, and D. Redburn for scientific advice. Supported by NIH grants Al 32651 and Al 07290. For early studies, ImmuLogic Corporation supplied funds for obtaining 50 liters of U937 supernatants.

20 January 1995; accepted 26 May 1995

Cloning and Characterization of a G Protein–Activated Human Phosphoinositide-3 Kinase

Borislav Stoyanov, Stefano Volinia, Theodor Hanck, Ignacio Rubio, Michael Loubtchenkov, Daria Malek, Stefka Stoyanova, Bart Vanhaesebroeck, Ritu Dhand, Bernd Nürnberg, Peter Gierschik, Klaus Seedorf, J. Justin Hsuan, Michael D. Waterfield,* Reinhard Wetzker*

Phosphoinositide-3 kinase activity is implicated in diverse cellular responses triggered by mammalian cell surface receptors and in the regulation of protein sorting in yeast. Receptors with intrinsic and associated tyrosine kinase activity recruit heterodimeric phosphoinositide-3 kinases that consist of p110 catalytic subunits and p85 adaptor molecules containing Src homology 2 (SH2) domains. A phosphoinositide-3 kinase isotype, p110 γ , was cloned and characterized. The p110 γ enzyme was activated in vitro by both the α and $\beta\gamma$ subunits of heterotrimeric guanosine triphosphate (GTP)-binding proteins (G proteins) and did not interact with p85. A potential pleckstrin homology domain is located near its amino terminus. The p110 γ isotype may link signaling through G protein–coupled receptors to the generation of phosphoinositide second messengers phosphorylated in the D-3 position.

Phosphoinositide-3 kinase (PI-3K) activity increases in response to numerous ligands, including those that signal through receptor tyrosine kinases, cytokine receptors, and G protein–coupled receptors (1–3). The acti-

vation of PI-3K by membrane-bound receptor tyrosine kinases results from recruitment of p110-p85 heterodimers to membranebound signaling complexes; this process is mediated by the SH2 domains of p85 that

SCIENCE • VOL. 269 • 4 AUGUST 1995

Reports

A	В			
MELIPIEFVL PTSQRKCKSP ETALLHVAGH GNVEQMKAQV WLRALETSVA	p110y	829	IIFKHGDOLRODMLILOILRIMESIWE(69)ERFVYSCAGYCVATFVLGI	943
ADFYHRLGPH HFLLLYQKKG QWYEIYDKYQ VVQTLDCLRY WKATHRSPGQ	100 p110a	799	IIPKNGDDLRODMLTLCIIRIMENIWQ(69)DLFTRSCAGYCVATFILGI	913
IHLVQRHPPS EESQAFQRQL TALIGYDVTD VSNVHDDELE FTRRGLVTPR	200 21108	802	VIENCEDI RODMITION BLADILWE(70)EEFTIS CACYCVASYVIGI	918
MAEVASRDPK LYAMHPWVTS KPLPEYLWKK TANNCIFIVI HRSTTSUTIK	200 01100	004		720
VSPDDTPGAI LQSFFTKMAK KKSLMDIPES QSEQDFVLKV CGRDEILVGE	200 Vps34	621	LMPRVGDDLRODQLVVOIISLANELLK(63)DNPVRSCAGICVIIIIGV	143
TPIKNFQWVK HULKNGEEIH VVLDTFFDFA LDEVKKEEWF LVDDUTGVIG	FRAP	2184	FLLKGHEDLRODERVMOLFGLVNTLLA(110)TNYTRSLAVMSMVGYIJGL	2336
INCUCOOM CORPERENT TEENING FESTIVE ANTOLOOV	400 Tor2	2125	YVLKGHEDI RODSLVMOLFGLVNTLLQ(109)TTYTRSLAVMSMTGYI DGL	2278
CORADALSER ASAESDEERE KOKURLLVVV NILLIDHREL LERGEVULHM		793	VIASTOD T. POPAPA VONTOAMANTWU(70)DNPASSLAAYSVICYLIOV	916
WOISGKGEDO GSENADKLTS ATNPDKENSM SISILLDNYC HPIALPKHOP	500	135		
TEDEFECTRVE AEMENOLEKO LEATIATDEL NELTAEDKEL LWHERYESLK				
HPKAYPKLFS SVKWGOOEIV AKTYOLLARR EVWDOSALDV GLTMOLLDCN	600			
FSDENVRAIA VQKLESLEDD DVLHYLLQLV QAVKFEPYHD SALARFLLKR	p110y	944	GDRHNDNIMITE-TGNLFHIDFGHILGNYKSFLGINKERVPFV-LTPDFLFVMGTSGK	999
GLRNKRIGHF LFWFLRSEIA QSRHYQQRFA VILEAYLRGC GTAMLHDFTQ	700 p110g	914	GDRHNSNIMVKD-DGOLFHIDFGHFLDHKKKKFGYKRERVP V-LFODFLIVISKGAQEC	971
QVQVIEMLQK VTLDIKSLSA EKYDVSSQVI SQLKQKLENL QNSQLPESFR		010	CONTRACTOR MODE BUT DECUTE ONEY CARE OF A DUPLIES AND THE OCCUTA	974
VPYDPGLKAG ALAIEKCKVM ASKKKPLWLE FKCADPTALS NETIGIIFKH	800 pilop	919	GDRHSDNIMVRR-IGDLFHIDHGNILGAF KSRFGIRRERVFFI-DIIDFINVLQQGRIG-	
GDDLRQDMLI LQILRIMESI WETESLDLCL LPYGCISTGD KIGMIEIVKD	Vps34	730	GDRHLDNLLVTP-DGHFFHADFGYILGQDPKPFPPIMKLPPQIIEAFGG	111
ATTIAKIQQS TVGNTGAFKD EVLNHWLKEK SPTEEKFQAA VERFVYSCAG	900 FRAP	2337	GDRHPSNLMLDRLSGKILHIDFGDCFEVAMTREKFP-EKIPF-RLTRMLTNAMEVTGLDG	2394
YCVATFVLGI GDRHNDNIMI TETGNLFHID FGHILGNYKS FLGINKERVP		2279	CORPORTATION TO AN THE DECOMPENSATILE READER FOR THE AND A STREAM THE DECOMPENSATION OF THE AND A STREAM STREA	2335
FVLTPDFLFV MGTSGKKTSP HFQKFQDICV KAYLALRHHT NLLIILFSMM 1	1000 1012			0.50
LMTGMPQLTS KEDIEYIRDA LTVGKNEEDA KKYFLDQIEV WQRQRMDCAV	YPI4K	917	KIRHNGNIMIDN-EGHVSHIDFEFMLSNSPGSVGFEAAPF-KLIYEYIELLGGV	308

Fig. 1. Sequence analysis of human p110 γ cDNA. (**A**) Predicted translation product of the human p110 γ cDNA clone. The nucleotide sequence of p110 γ has been deposited in the European Molecular Biology Laboratory database (accession number X83368). (**B**) Sequence comparison of part of the kinase domain of p110 γ , human p110 α (*12*), human p110 β (*7*), yeast Vps34 (8),

human FRAP (27), yeast Tor2 (28), and yeast PI-4 kinase (yPI4K) (9). Amino acid residues identical among all proteins are shown with a black background, and physiochemically conserved amino acids have a shaded background. The GCG program package was used for sequence alignment.

bind to specific phosphotyrosine residues on the receptors (1). In contrast, the mechanism by which G protein-coupled receptors induce PI-3K activation is currently unclear. Activation of partially purified neutrophil (4) and platelet (5) PI-3K activities upon addition of G protein $\beta\gamma$ subunits might result from an interaction with a p110-p85 heterodimer (5) or might involve a distinct G protein-specific PI-3K isotype (4). Here, we report the cloning, expression, and purification of a PI-3K that does not bind p85 and is activated upon addition of either the G α or G $\beta\gamma$ subunits.

The diversity of the signaling events that regulate PI-3K activity and the evidence that at least two PI-3K isotypes exist (6, 7) warranted a search for new members of the PI-3K family. To isolate complementary DNAs (cDNAs) encoding PI-3Ks, we screened a human bone marrow cDNA library with probes generated from the polymerase chain reaction (PCR) with degenerate oligonucleotide primers that were based on conserved regions of bovine PI-3K (p110 α) (6), yeast phosphatidylinositol (PtdIns)-3K (Vps34) (8), and a yeast PI-4 kinase (9). Primers corresponding to the

B. Stoyanov, T. Hanck, I. Rubio, M. Loubtchenkov, R. Wetzker, Max Planck Research Unit in Growth Factor Signal Transduction, Medical Faculty, University of Jena, 07747 Jena, Germany.

highly conserved amino acid sequences KNGDDLR and HIDFG [residues 803 to 809 and 932 to 936 in p110a (6, 10)] were used to amplify a 402-bp product that was 57% identical to the corresponding region of the gene encoding bovine $p110\alpha$. We used this PCR fragment as a probe and isolated a set of overlapping clones from a human U937 cDNA library. The largest clone contained an open reading frame with the potential to encode 1050 amino acids (Fig. 1A). The cDNA contained three potential initiation codons preceded by an in-frame stop codon. The most COOHterminal of these methionine residues conformed best with criteria for the site of initiation of translation (11). The protein encoded by this cDNA, termed p110y, has predicted molecular mass of 120 kD, а which is similar to that of the bovine (6) and human (7, 12) p110 α and p110 β catalytic subunits.

The predicted amino acid sequence of p110 γ exhibits 28 to 36% overall similarity to the sequences of other PI-3Ks, including human p110 α (36% identity) (12), human p110 β (33.5% identity) (7), and yeast PtdIns-3K (27.7% identity) (3, 8). The highest degree of conservation among these pro-

Fig. 2. Distribution of p110 γ in mammalian tissue. (A) Detection of p110 γ in the human leukemic cell lines U937 and K562 by immunoprecipitation with antibodies to p110 γ and subsequent protein immunoblotting (6) with the same antibodies. A rabbit polyclonal antiserum to p110 γ was raised against a 15-amino acid peptide corresponding to a sequence of p110 γ (residues 742 to 756, NSQLPESFRVPYDPG) (10). The an-

tibodies were purified by protein A chromatography and affinity chromatography with the peptide antigen coupled to Actigel (Sterogene). Horseradish peroxidase–conjugated goat antibody to rabbit immunoglobulin G (Sigma, 1:2000 dilution) was used as a secondary antibody. Bound peroxidase was visualized by enhanced chemiluminescence (Amersham). (**B**) Northern (RNA)

blot (Clontech) probed with a random primer–labeled PCR fragment encompassing the p110γ sequence between amino acids 1 and 233. The blot was hybridized and washed according to the manufacturer's specifications.

200

kD

teins is at the COOH-terminus within the putative kinase domain (1) (Fig. 1B). There is no similarity between p110 γ and either p110 α or p110 β in the NH₂-terminal region through which p110 α and p110 β bind p85 α and p85 β (13). However, the sequence of p110 γ close to the NH₂-terminus is similar to the pleckstrin homology (PH) domain (14) of Ras-guanosine triphosphatase activating protein (Ras-GAP) (21.7% identity) and dynamin (15.5% identity).

Immunoprecipitation and protein immunoblot analysis with an antiserum to a peptide derived from p110y revealed a 110kD protein in lysates of the human leukemic cell lines U937 and K562 (Fig. 2A). The 5.3-kb mRNA encoding the protein was detected in the pancreas, skeletal muscle, liver, and heart (Fig. 2B). To characterize the substrate specificity of $p110\gamma$, we used baculoviruses to express the recombinant protein as a glutathione-S-transferase (GST) fusion protein in Sf9 insect cells (15). The p110y-GST fusion protein was affinity-purified on glutathione-Sepharose beads and analyzed by SDS-polyacrylamide gel electrophoresis (PAGE) (Fig. 3A); it was found to phosphorylate PtdIns, PtdIns-4 phosphate (PI-4P), and PtdIns-

S. Volinia, B. Vanhaesebroeck, R. Dhand, J. J. Hsuan, Ludwig Institute for Cancer Research, London W1P 8BT, UK.

D. Malek and P. Gierschik, Department of Pharmacology and Toxicology, University of Ulm, 89069 Ulm, Germany. S. Stoyanova, Institute of Biochemistry II, Medical Faculty, University of Jena, 07747 Jena, Germany.

B. Nürnberg, Institute of Pharmacology, Freie Universität Berlin, 14195 Berlin, Germany.

Berlin, 14195 Berlin, Germany. K. Seedorf, Department of Molecular Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany.

M. D. Waterfield, Ludwig Institute for Cancer Research, London W1P 8BT, UK, and Department of Biochemistry and Molecular Biology, University College, London WCE 6BT, UK.

^{*}To whom correspondence should be addressed.

4,5-bisphosphate $[PI(4,5)P_2]$ in the D-3 position of the inositol ring (Fig. 3B). The activity of p110 γ was inhibited by nanomolar concentrations of wortmannin, as are the bovine PI-3K α and human PtdIns-3K enzymes (4, 16).

To evaluate any interaction between p110 γ and the p85 adaptor molecule, we expressed p110 γ and p110 α as GST fusion proteins either alone or together with p85 α or p85 β in Sf9 cells. Under these conditions, p110 α copurified with p85 α and p85 β , whereas p110 γ did not associate with either the p85 α or p85 β subunits, consistent with the absence of a p85-binding region at the NH₂-terminus of p110 γ .

The failure of p110 γ to bind p85 subunits prompted us to search for alternative regulatory mechanisms. The presence of a putative PH domain in p110 γ suggested possible regulation by G proteins, because this region mediates the interaction of the β -adrenergic receptor kinase with G $\beta\gamma$ subunits (17). Furthermore, G protein–linked receptors induce a rapid accumulation of 3-phosphorylated phosphoinositides in neutrophils (18, 19) and platelets (5, 20), and

Fig. 3. Expression of p110 γ . (**A**) Recombinant GST-p110 γ fusion protein or GST alone were expressed in Sf9 insect cells infected with appropriate baculoviruses (*15*), purified, fractionated by SDS-PAGE, and visualized by staining with Coomassie blue. The cDNA for p110 γ was cloned from codon 4 into the vector pAcG2T (*15*) to generate the vector pAcG2T-p110 γ as a COOH-terminal in-frame fusion with the GST gene. Sf9 cells were transfected with pAcG2T-p110 γ and linearized baculovirus DNA (BaculoGold, Pharmingen). A single recombinant baculovirus expressing GST-p110 γ was plaque-purified and amplified; expression and purification of the recombinant protein was done according to standard protocols (*13*). (**B**) Lipid kinase assay of purified recombinant p110 γ with PtdIns (lane 1), PI-4P (lane 2), and PI(4,5)P₂ (lane 3) as substrates. The kinase assay was done essentially as described (4) but in the

the partial purification of a $G\beta\gamma$ -stimulated PI-3K enzyme has been described (4, 5). To determine whether p110y might be activated by G proteins, we added the transducin G protein subunits α_{t} or $\beta \gamma_{t}$ to purified GST-p110y. Both $G\alpha$, and $G\beta\gamma$, strongly activated p110 γ (Fig. 4A). The stimulation of p110y by $G\alpha$. loaded with guanosine diphosphate (GDP) was dependent on the presence of AlF_4^- (21), and the stimulation of p110 γ by $\dot{G}\beta\gamma_t$ was completely suppressed by Ga.-GDP. In contrast, p85-dependent p110 α was not activated by G α .-GDP-Al \bar{F}_4^- or by $G\beta\gamma_t$. In addition to the stimulation of p110 γ by G α ,-GDP-AlF₄, we observed that $G\alpha$, could also activate when it was loaded with the nonhydrolyzable GTP analog guanosine 5'-O-(3-thiotriphosphate) (GTP-y-S) (Fig. 4B). Activation was concentration-dependent and showed half-maximal stimulation at about 200 nM Ga_r-GTP- γ -S. Moreover, p110 γ activity was considerably more sensitive to $G\alpha_{i1}$, another subspecies of the $G\alpha_i$ group of Ga subunits ($K_{0.5} = 0.5$ nM). These data are consistent with the involvement of the G_i subfamily in the stimulation of neutro-

> A 5 5 5 5 8 B 1 2 3 200-110-60-40-30kD

absence of cholate. Sonicated lipid vesicles (30 μ l) containing 320 μ M phosphatidylethanolamine, 140 μ M phosphatidylcholine, 300 μ M phosphatidylserine, 30 μ M sphingomyelin, and 320 μ M PtdIns, PI-4P, or PI(4,5)P₂ were added to 10 μ l of enzyme (0.1 ng) and incubated for 8 min on ice. The assay was started by addition of 20 μ M adenosine triphosphate (ATP, 10 μ l) containing 10 μ Ci [γ -³²P]ATP and was incubated for 15 min at room temperature. Extracted lipids were separated and visualized as described (4). The identity of the 3-phosphorylated phosphoinositides PtdIns-3 phosphate (PI-3P), PtdIns-3, 4-bisphosphate [PI(3,4)P₂], and PtdIns-3,4,5-trisphosphate (PIP₃) was confirmed by anion exchange high-performance liquid chromatography after deacylation of the lipids (24).

Fig. 4. Regulation of p110 γ by G α and G $\beta\gamma$. (**A**) Effect of G protein subunits α_t and $\beta\gamma_t$ on p110 γ activity. Purified recombinant p110 γ or bovine p110 α was incubated with G protein subunits, and activity was assayed thereafter with PtdIns as a substrate (*29*). (**B**) Concentration dependence of G α_i and G α_t for p110 γ activity. Recombinant p110 γ was incubated with different concentrations of G α_{i1} -GTP- γ -S (\Box) purified from bovine retina (*26, 30*), and PI-3K activity was assayed (*31*).

phil PI-3K activity by agonists of G protein-coupled receptors, such as the formylated Met-Leu-Phe receptor (19).

This study defines p110y as a member of the PI-3K family of enzymes. Our results suggest that induction of cellular PI-3K activity by heterotrimeric G protein-linked receptors (18) may occur by a mechanism in which the $G\alpha$ or $G\beta\gamma$ subunits, or both, directly modulate the activity of p110 γ . In this respect, p110 γ is similar to the β isoforms of phospholipase C, which are also activated by both the α and $\beta \gamma$ G protein subunits (22). Thus, it seems that there are two distinct mechanisms by which receptors can trigger increases in PI-3K activity and the generation of 3-OH' phosphoinositides. The first involves the interaction of p110-p85 heterodimeric PI-3Ks with tyrosine-phosphorylated proteins, such as autophosphorylated receptors or their substrates, through the SH2 domains of the p85 adaptor subunits. The second may involve direct activation and recruitment of the p110y isotype through an interaction with Ga or G $\beta\gamma$ subunits, which are released upon agonist activation of receptors linked to G proteins. This diversity in mechanisms of activation closely resembles that of the phospholipase C enzymes, various isotypes of which are regulated either by tyrosine phosphorylation or by heterotrimeric G proteins (23).

REFERENCES AND NOTES

- 1. G. Panayotou and M. D. Waterfield, *Bioessays* 15, 171 (1993).
- L. R. Stephens, T. R. Jackson, P. T. Hawkins, *Biochim. Biophys. Acta* **1179**, 27 (1993); S. Wennström et al., *Curr. Biol.* **4**, 385 (1994); H. Yano et al., *J. Biol. Chem.* **268**, 25846 (1993); T. Okada et al., *ibid.* **269**, 3568 (1994).
- 3. P. V. Schu et al., Science 260, 88 (1993).
- 4. L. Stephens et al., Cell 77, 83 (1994).
- 5. P. A. Thomason *et al.*, *J. Biol. Chem.* **269**, 16525 (1994).
- 6. I. D. Hiles et al., Cell 70, 419 (1992).
- P. Hu et al., Mol. Cell. Biol. 13, 7677 (1993).
 P. K. Herman, J. H. Stack, S. D. Emr, Cell 64, 425 (1991).
- 9. C. A. Flanagan et al., Science 262, 1444 (1993).
- Abbreviations for the amino acid residues are as follows: A, Ala; C, Cys; D, Asp; E, Glu; F, Phe; G, Gly; H, His; I, Ile; K, Lys; L, Leu; M, Met; N, Asn; P, Pro; Q, Gin; R, Arg; S, Ser; T, Thr; V, Val; W, Trp; and Y, Tyr.
- M. Kozak, J. Cell Biol. 108, 229 (1989); S. Grünert and R. J. Jackson, EMBO J. 13, 3618 (1994).
- 12. S. Volinia et al., Genomics 24, 472 (1994).
- 13. R. Dhand et al., EMBO J. 13, 511 (1994).
- 14. T. J. Gibson et al., Trends Biochem. Sci. 19, 349 (1994).
- A. H. Davis, J. B. M. Jowett, I. M. Jones, *Biotechnol*ogy 11, 933 (1993).
- 16. S. Volinia et al., EMBO J., in press.
- 17. K. Touhara et al., J. Biol. Chem. 269, 10217 (1994).
- L. R. Stephens, K. T. Hughes, R. F. Irvine, *Nature* 357, 33 (1991).
- 19. L. Stephens et al., EMBO J. 12, 2265 (1993).
- 20. W. G. King et al., Biochem. J. 278, 475 (1991).
- J. Bigay, P. Deterre, C. Pfister, M. Chabre, FEBS Lett. 191, 181 (1985).
- A. V. Smrcka and P. C. Sternweis, J. Biol. Chem. 268, 9667 (1993); J. R. Hepler et al., ibid., p. 14367.
- 23. S. G. Rhee and K. D. Choi, *ibid*. **267**, 12393 (1992).

24. K. R. Auger et al., Cell 57, 167 (1989).

- B. Nürnberg et al., Biochem. J. 300, 387 (1994).
 P. Gierschik and M. Camps, Methods Enzymol. 238,
- 181 (1994).
 E. J. Brown et al., Nature **369**, 756 (1994). The sequence of the FK506 binding protein–rapamycin-associated protein, which may have PI-3 kinase activity, is included for comparison.
- J. Kunz et al., Cell 73, 585 (1993). Yeast Tor2 (target of rapamycin) is also a putative PI-3 kinase.
- 29. G_t proteins purified from bovine retina (24) were mixed with the lipid vesicles for 10 min on ice before addition of the enzyme. The following protein concentrations were used: p110γ, 10 pM; p110α, 10 pM; Gα_t-GDP, 2 µM; and Gβγ_t, 1 µM. The activated Gα_t-GDP-AIF₄⁻ was produced by incubation of Gα-GDP with 20 µM AlCl₃ and 10 mM NaF in assay buffer for 1 hour at room temperature (25). AIF₄⁻ alone did not activate the enzyme. The content of GBγ in

the G α_t preparations was estimated to be approximately 2% (mol/mol) by immunoblotting with G β antibodies and different amounts of G $\beta\gamma_t$ for calibration. An involvement of $\beta\gamma$ impurities in the stimulatory effect of G α_t can be excluded because half-maximal activation by G α_t -GDP-AIF_4 and G β_t was observed at concentrations of about 2 μM and 200 nM, respectively.

- Gα_t–GTP-γ-S was produced by means of Blue Sepharose (Pharmacia) chromatography (26) in the presence of 100 μM GTP-γ-S.
- 31. Before addition of the enzyme, both G_α proteins were incubated for 1 hour on ice in the presence of 100 μM GTP-γ-S and 5 mM MgCl₂, mixed with the PtdIns-containing lipid vesicles, and incubated again for 10 min on ice. Activity was assayed as described (Fig. 3). After separation of extracted lipids by thin-layer chromatography, [³²P]PI-3P soots were located with the use of a phosphorim-

A Gene Outside the Human MHC Related to Classical HLA Class I Genes

Keiichiro Hashimoto,* Momoki Hirai, Yoshikazu Kurosawa

By presenting antigenic peptides to T lymphocytes, major histocompatibility complex (MHC) class I molecules play important roles in the human immune system. Knowledge is limited on the evolutionary history of human MHC class I-related molecules. An expressed class I gene, *MR1*, has now been identified on human chromosome 1q25, outside the MHC. In contrast to other known human divergent class I genes, *MR1* encodes peptide-binding domains similar to those encoded by human leukocyte antigen (HLA) class I genes on chromosome 6 and by nonmammalian classical MHC class I genes. This gene may thus contribute to understanding the evolution of the MHC.

MHC class I molecules present antigenic peptides to CD8⁺ T cells (1). In humans, the HLA class I gene family consists of six members: polymorphic HLA-A, -B, and -C, and oligomorphic HLA-E, -F, and -G (2). The functions of HLA-E, -F, and -G molecules are unknown, although HLA-G is thought to play a role in the maternal-fetal interaction (3). Several groups of human class I-related molecules-including the CD1 family (4), Zn-α2-glycoprotein (Zna2gp) (5), MICA (MHC class I chainrelated molecule A) (6), and a human homolog of the rat neonatal Fc receptor (FcRn) (7)—have also been identified. Studies on nonmammalian MHC-related systems suggest a tendency to expand the number of genes in various animals (8-10). Even in humans, it is possible that only a fraction of MHC class I-related molecules have been identified to date. To examine this possibility, we have attempted to isolate unknown human class I genes. We now describe a close relative of classical HLA class I genes in the human genome.

The MR1 gene was discovered by an approach based on our previous polymerase chain reaction (PCR)-based strategy (11-13). A candidate human class I gene fragment was amplified from human genomic DNA with the use of two primers that correspond to the two conserved regions in the α 3 domain of class I molecules (14). The DNA sequence of this PCR product did not correspond to that of any previously described human class I sequence. Because expression of this DNA sequence was detected by Northern (RNA) analysis (Fig. 1) (15), a human thymus complementary DNA (cDNA) library was screened with the PCR fragment, and the nucleotide sequence and predicted amino acid sequence (Fig. 2) of the new gene, MR1, were determined. Similar to a typical class I molecule,

Fig. 1. Northern analysis of *MR1* expression. A 1.15-kb fragment prepared from the *MR1* cDNA clone C7 was hybridized to membranes containing polyadenylated RNA from human heart, brain, placenta, lung, liver, skeletal muscle, kidney, pancreas, spleen, thymus, prostate, testis, ovary, small intestine, colon, and peripheral blood leukocytes (lanes 1 to 16, respectively) (*15*). Size markers (in kilobases) are indicated on the left.

kb

9.5-

7.5 -

4.4-

2.4-

1 2 3 4 5 6 7 8

ager (Bio-Rad) and were quantitated according to the manufacturer's instructions. In three independent experiments, maximal stimulatory concentrations of Ga₁₇-GTP-γ-S (2 nM) and Ga₁-GTP-γ-S (1 µM) induced 1.5 to 3 times the base-line rate of p110γ activity. Heat denaturation of the Ga proteins (10 min at 100°C) completely abolished this stimulation. GTP-γ-S alone (100 µM) and a separate preparation of Ga₁-GDP did not stimulate enzyme activity.

32. We thank J. Thomer for unpublished sequence information and A. Ullrich in whose laboratory a partial clone of p110y was isolated by B.S. This work was supported by grants from Deutsche Forschungsgemeinschaft (SFB 197), the British Council, and Deutscher Akademischer Austauschdienst. B.V. was supported in part by the Belgian NFWO.

8 December 1994; accepted 24 April 1995

the MR1 protein comprises a signal sequence, three extracellular domains ($\alpha 1$, $\alpha 2$, and $\alpha 3$), a transmembrane domain, and a cytoplasmic domain. The chromosomal location of MR1 was determined by fluorescence in situ hybridization (FISH) analysis (16, 17) as the distal portion of 1q25 (1q25.3) (Fig. 3A), outside the human MHC (6p21.3). The location of MR1 on chromosome 1 was also supported by the results of PCR amplification of the MR1 fragment from somatic cell hybrid DNA (18) (Fig. 3B).

The predicted amino acid sequence of MR1 was compared with the sequences of various class I molecules (Fig. 4). The three extracellular domains ($\alpha 1$, $\alpha 2$, and $\alpha 3$) of a class I molecule can be divided into two structurally distinct components: the peptide-binding symmetrical $\alpha 1$ and $\alpha 2$ domains, which contain characteristic α helices, and the α 3 domain, which adopts the structure of the immunoglobulin fold. In the α 3 domain, the percentage amino acid identity between MR1 and the HLA class I molecules is similar to that between the HLA class I molecules and either other human divergent class I molecules or nonmammalian class I molecules (Fig. 4).

However, comparison of the functionally important peptide-binding domains (α 1 and α 2) revealed that MR1 exhibits ~40 to 50% amino acid identity with the classical MHC class I molecules of human, mouse, and nonmammalian (for example, chicken) species in both these domains (Fig. 4). Polymorphic

9 10 11 12 13 14 15 16

K. Hashimoto and Y. Kurosawa, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi 470-11, Japan.

M. Hirai, Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113, Japan.

^{*}To whom correspondence should be addressed.