over the middle- and high-latitude continents over the past decade (Fig. 2) resemble some results obtained by coupled atmosphere-ocean models forced with steadily increasing atmospheric greenhouse gases (25), and evidence suggests that the recent warming may be related to increasing tropical ocean temperatures that have led to an enhancement of the tropical hydrologic cycle (12, 26). However, significant decade-long changes in the atmospheric circulation, and in the NAO in particular, have contributed substantially to the regional warming, complicating the interpretation of the climate system response to increased greenhouse gas forcing. Decadal variability in the NAO has become especially pronounced since about 1950 (Fig. 1A), but the causes for such variability in the Atlantic are not clear. The relation of the NAO to greenhouse gas forcing and possible links to coherent variations in tropical Atlantic SSTs (27) need to be examined, along with how well climate models simulate the NAO and its recent variations.

REFERENCES AND NOTES

- 1. G. T. Walker and E. W. Bliss, Mem. R. Meteorol. Soc. 44, 53 (1932); H. van Loon and J. C. Rogers, Mon. Weather Rev. 106, 296 (1978); J. M. Wallace and D. S. Gutzler, *ibid*, **109**, 784 (1981); A. G. Barnston and R. E. Livezey, ibid. 115, 1083 (1987); Y. Kushnir and J. M. Wallace, J. Atmos. Sci. 46, 3122 (1989). An empirical orthogonal function analysis reveals that the NAO is the dominant mode of variability of the surface atmospheric circulation in the Atlantic and accounts for more than 36% of the variance of the mean December to March SLP field over the region from 20°N to 80°N and 90°W to 40°E during 1899 through 1994. Barnston and Livezev show that the oscillation is present throughout the year in monthly mean data but that it is most pronounced during winter
- 2. J. C. Rogers, J. Clim. Appl. Meteorol. 24, 1303 (1985).
- H. H. Lamb and A. I. Johnson, "Secular variations of the atmospheric circulation since 1750," in *Geophys. Mem.* vol. 110 [Her Majesty's Stationery Office (HMSO), London, 1966]; H. H. Lamb, "British Isles weather types and a register of daily sequence of circulation patterns, 1861–1971," in *Geophys. Mem.* vol. 116 (HMSO, London, 1972); T. J. Makrogiannis, A. A. Bloutsos, B. D. Giles, *J. Climatol.* 2, 159 (1982); D. E. Parker and C. K. Folland, *Meteorol. Mag.* 117, 201 (1988).
- 4. H. van Loon and J. Williams, *Mon. Weather Rev.* **104**, 636 (1976).
- 5. T. Moses et al., J. Climatol. 7, 13 (1987).
- K. E. Trenberth, in *Earth System Responses to Global Change: Contrasts Between North and South America*, H. A. Mooney, E. R. Fuentes, B. I. Kronberg, Eds. (Academic Press, New York, 1993), pp. 35–59.
- The data consist of land surface temperature data from the University of East Anglia [P. D. Jones, J. *Clim.* **1**, 654 (1988)] blended with SST data from the United Kingdom Meteorological Office [M. Bottomley, C. K. Folland, J. Hsiung, R. E. Newell, D. E. Parker, "Global ocean surface temperature atlas" (UK Meteorological Office, London, 1990)].
- T. Nitta and S. Yamada, J. Meteorol. Soc. Jpn. 67, 375 (1989); K. E. Trenberth, Bull. Am. Meteorol. Soc. 71, 988 (1990).
- K. E. Trenberth and J. W. Hurrell, *Clim. Dynam.* 9, 303 (1994).
- 10. D. R. Cayan, J. Clim. 5, 354 (1992).
- 11. A. Kitoh, J. Meteorol. Soc. Jpn. 69, 271 (1991); T.-C.

Chen, H. van Loon, K.-D. Wu, M.-C. Yen, *ibid.* **70**, 1137 (1992); N. E. Graham, *Clim. Dynam.* **9**, 135 (1994); A. J. Miller, D. R. Cayan, T. P. Barnett, N. E. Graham, J. M. Oberhuber, *ibid.*, p. 287.

- 12. A. Kumar et al., Science 266, 632 (1994)
- 13. N. E. Graham *et al.*, *J. Clim.* **7**, 1416 (1994); N.-C. Lau and M. J. Nath, *ibid.*, p. 1184.
 - 14. C. S. Bretherton et al., ibid. 5, 541 (1992)
- K. E. Trenberth and D. A. Paolino, *Mon. Weather Rev.* **108**, 855 (1980).
- J. C. Rogers, J. Clim. 3, 1364 (1990); J. W. Hurrell, J. Atmos. Sci. 52, 2286 (1995).
- 17. K. E. Trenberth, Nat. Ctr. Atmos. Res. Tech. Note NCAR/TN-373+STR (National Center for Atmospheric Research, Boulder, CO, 1992); ______ and C. J. Guillemot, J. Clim., in press. The ECMWF data were truncated at 21 wave numbers with a spherical harmonic representation and were available at seven vertical levels. The moisture budget was computed with the vertically integrated equation for conservation of water vapor, ignoring the role of liquid water in the atmosphere and the local rate-of-change term

$$\nabla \cdot \frac{1}{g} \int_{0}^{P_{s}} q \mathbf{v} dp = E - P$$

where q is the specific humidity, **v** is the horizontal vector wind, and p is pressure; s denotes surface pressure, and g represents gravity.

- D. H. Bromwich, F. M. Robasky, R. A. Keen, J. F. Bolzan, J. Clim. 6, 1253 (1993).
- World Glacier Monitoring Service (WGMS), Glacier Mass Balance Bulletin no. 3, 1992–1993 (Zurich, 1994).
- 20. National Oceanic and Atmospheric Administration

(NOAA), Climate Assessment: A Decadal Review 1981–1990 (Government Printing Office, Washington, DC, 1991). Seasonal precipitation anomaly distributions are available from NOAA Annual Climate assessments, from Climate System Monitoring (CSM) monthly bulletins produced by the World Climate Programme, and from NOAA monthly climate diagnostics bulletins.

- C. U. Hammer et al., Radiocarbon 28, 284 (1986);
 W. Dansgaard et al., Nature 339, 532 (1989); K. C. Taylor et al., *ibid.* 361, 432 (1993); R. B. Alley et al., *ibid.* 362, 527 (1993).
- L. K. Barlow et al., Geophys. Res. Lett. 20, 2901 (1993).
- J. Bjerknes, Adv. Geophys. 10, 1 (1964); C. Deser and M. L. Blackmon, J. Clim. 6, 1743 (1993); Y. Kushnir, *ibid.* 7, 141 (1994).
- 24. S. Levitus et al., Science 266, 96 (1994).
- Intergovernmental Panel on Climate Change (IPCC), *Climate Change 1992: The Supplementary Report to the IPCC Scientific Assessment*, J. T. Houghton, B. A. Callander, S. K. Varney, Eds. (Cambridge Univ. Press, Cambridge, 1992).
- 26. N. E. Graham, Science 267, 666 (1995).
- 27. N.-C. Lau and M. J. Nath, J. Clim. 3, 965 (1990).
- 28. The ECMWF data were provided by ECMWF. The comments of two anonymous reviewers helped improve the manuscript. Special thanks to K. Trenberth and H. van Loon for their scientific guidance and useful comments and suggestions. The National Center for Atmospheric Research is sponsored by NSF.

conserved regions (1). However, outside

these regions, En proteins share little iden-

tity across the phyla. Overall, En-1 and

En-2 proteins share approximately 55%

amino acid identity with each other and

approximately 35% identity with Drosophila

mouse embryogenesis at the one-somite

stage, in cells of the anterior neural folds.

En-2 expression, which occurs in a similar

region, initiates at the five-somite stage

but does not fully overlap with En-1 until

approximately eight somites have formed

(2). Expression of both genes continues in

cells of the ventricular layer of this pre-

sumptive mid-hindbrain region. At 9.5

days post coitus (dpc), En-1 expression

En-1 expression is first detected during

20 March 1995; accepted 30 May 1995

Rescue of the En-1 Mutant Phenotype by Replacement of En-1 with En-2

Mark Hanks,* Wolfgang Wurst,† Lynn Anson-Cartwright, Anna B. Auerbach,‡ Alexandra L. Joyner‡§

The related mouse *Engrailed* genes *En-1* and *En-2* are expressed from the one- and approximately five-somite stages, respectively, in a similar presumptive mid-hindbrain domain. However, mutations in *En-1* and *En-2* produce different phenotypes. *En-1* mutant mice die at birth with a large mid-hindbrain deletion, whereas *En-2* mutants are viable, with cerebellar defects. To determine whether these contrasting phenotypes reflect differences in temporal expression or biochemical activity of the En proteins, *En-1* coding sequences were replaced with *En-2* sequences by gene targeting. This rescued all *En-1* mutant defects, demonstrating that the difference between *En-1* and *En-2* stems from their divergent expression patterns.

En protein.

The mouse Engrailed (En) genes En-1 and En-2 are the murine members of a large conserved gene family related to the Drosophila segmentation gene engrailed (en). All En genes encode proteins that contain a homeodomain as well as four small, highly

*Present address: Procter and Gamble Pharmaceuticals, Miami Valley Laboratories, Cincinnati, OH 45253–8707, USA.

†Present address: GSF Research Center, Institute for Genetics, Ingolstaedter Landstrasse 1D-85758, Oberschleissheim-Munich, Germany.

‡Present address: Developmental Genetics Program, Skirball Institute of Biomolecular Medicine, New York University Medical Center, 540 First Avenue, New York, NY 10016, USA.

§To whom correspondence should be addressed.

Division of Molecular and Developmental Biology, Samuel Lunenfeld Research Institute, Mt. Sinai Hospital, Toronto M5G 1X5, Canada.

also is detectable in two ventrolateral stripes in the hindbrain and spinal cord, in the dermomyatome, in the ventral ectoderm of the limb buds, and in sclerotomes (3)

En-1 and En-2 are key regulators of neural development, and En-1 also plays a crucial role in normal patterning of the limbs and skeleton. En-2 mutant homozygous mice are viable and fertile but show

Α

Xb

PGKTK

Х

Fig. 1. KI targeting strategy. (A) Top line, schematic of the En-1 genomic locus. The En-1 promoter is indicated by the horizontal arrow, and the coding sequence flanking the single intron is shown by the black boxes. The asterisk represents the En-1 polyadenylation signal. Middle line, linearized En-2 KI vector. The En-2 coding sequence, selectable

neo- mycin resistance (PGKNeo), and thymidine kinase (PGKTK) cassettes are shown. The locations of the loxP sites flanking the PGKNeo cassette are depicted by black ellipses. Dashed lines indicate the regions of homology between locus and targeting vector. The lacZ KI vector contained the lacZ coding sequence in place of En-2 but was otherwise identical. Bottom line, structure of targeted locus. After gene targeting, the En-2 cDNA sequence (or the lacZ sequence in lines electroporated with the lacZ KI vector) is inserted into the En-1 locus downstream of the En-1 promoter. The first 111 amino acids of En-1 are deleted, generating a null allele. The origins of the 5' and 3' probes (X and Y) used to identify the targeted cell

Xb С PGKNeo 4.5 kb Y В 1 2 3 4 5 6 kb kb 10→ ←7.5 4.5

an embryonic reduction in cerebellar size

and postnatal alteration of foliation (4).

In contrast, En-1 mutants (En-1^{hd/hd}; hd,

homeobox deletion) do not feed and die

within 24 hours after birth (5). En-1^{hd/hd}

mutants exhibit a deletion of cells from

the presumptive mid-hindbrain region

that is obvious by 9.5 dpc, which results in

loss of the third and fourth cranial nerves

and of most of the colliculi and cerebel-

7.5 kb

H

PGKNeo

С Xb

C Xb

En-2

Ĥ

10.5 kb

lines are shown. C, Cla I; H, Hind III; S, Sac I; and Xb, Xba I. (B) Southern blots of genomic DNA isolated from targeted ES cell lines. In lanes 1 to 3, DNA was digested with cell Xba I and probed with X (1.2-kb Xho I fragment; internal probe), giving an endogenous 7-kb fragment and targeted 12.2-kb fragment for lacZ-targeted cell lines and a 10.5-kb fragment for En-2-targeted cell lines (the 12.2- and 10.5-kb mutant bands appear to co-migrate because they were derived from different gels; the 10-kb marker refers to lanes 2 and 3). Lane 1, lacZ-targeted line; lane 2, En-2-targeted line; lane 3, wild-type ES cells. In lanes 4 to 6, DNA was digested with Hind III and probed with Y (700-bp Eco RI-Hind III fragment; external probe), giving a wild-type 7.5-kb fragment and targeted 4.5-kb fragments for both targeted cell lines. Lane 4, wild-type R1 ES cells; lane 5, En-2-targeted line; lane 6, lacZ-targeted line.

lum. Skeletal defects of the limbs, 13th rib, and sternum also are apparent.

Two obvious hypotheses could explain the difference between the En-1 and En-2 mutant brain phenotypes, given the extensive overlap in protein expression and their high degree of stuctural similarity. First, in spite of their similar structure, these proteins may have acquired novel biochemical functions during evolution and so fulfill different roles within the same cells. Alternatively, the proteins could be biochemically equivalent, but the divergence in the temporal expression pattern between the two genes may have resulted in the expression of a single En gene, En-1, at the one- to six-somite stage (approximately). Hence, a mutation of En-2 would be largely compensated for by the presence of En-1, but not the converse.

In order to distinguish between these two hypotheses, we used homologous recombination in embryonic stem (ES) cells to functionally replace En-1 with either En-2 or with lacZ (as a control) by inserting their coding sequences into the En-1 locus (6). The targeting event brought the integrated sequences under the control of the En-1 promoter and endogenous regulatory elements and at the same time introduced a null mutation in En-1 [the knock-in (KI) approach; Fig 1]. We designate these new En-1 alleles En-1^{2ki} (2ki, En-2 knock-in) and En-1^{Lki} (Lki, lacZ knock-in), respectively. Three ES cell clones targeted with En-2 and 14 clones targeted with lacZ were identified by Southern (DNA) blot analysis (Fig. 1).

Chimeric embryos derived from two lacZ targeted ES cell lines were stained directly with X-Gal (7) at 8.0, 9.0, and 11.5 dpc. lacZ expression was observed in the anterior neural folds of 8.0-dpc chimeras (8) and in

Fig. 2. Expression of integrated lacZ and En-2 sequences in embryos derived from lacZ-targeted and En-2targeted ES cell lines, respectively. (A) and (B) show expression of lacZ in chimeric embryos derived from aggregation of a lacZ-targeted ES cell line with a wild-type morula. (A) A 9.0dpc chimeric embryo stained with X-Gal. Strong expression is seen in the mid-hindbrain region (M) and ventral ectoderm of the forelimb bud (FI). The few somitic cells staining at this point are indicated by an arrow. (B) An 11.5-dpc chimeric embryo stained with X-Gal. lacZ expression is seen in

the mid-hindbrain region, posterior hindbrain, spinal cord, somite-derived tissue (arrow), forelimb buds (FI), and hindlimb buds (HI). (C) In situ whole mounts of a one- to two-somite $En-1^{2kl/+}$ embryo and (D) a wild-type embryo probed with an En-2-specific antisense sequence. En-2 expression is seen in the anterior neural folds of the En-12ki/+ embryo but not the wild-type stage-matched control. A portion of the extra embryonic membranes remaining after dissection was removed from the image with Adobe Photoshop. (E) Protein immunoblot of

protein extracts prepared from 9.5-dpc embryonic heads (H) and bodies (B), probed with Enhb-1 antiserum. Lanes 1 and 2, wild-type; lanes 3 and 4, En-12ki/+; lanes 5 and 6, En-12ki/+2ki embryos. En-2 protein is detected in both heads and bodies of En-1^{2ki/+} and En-1^{2ki/+2ki} embryos, but only in the head of the wild-type embryos, and no En-1 protein is detected in En-12ki/+2ki embryos.

the mid-hindbrain, spinal cord, somites, and limbs of 9.0-dpc and 11.5-dpc chimeras (Fig. 2, A and B). Thus, the integrated *lacZ* sequence was accurately regulated in an

Fig. 3. Alcian blue– (cartilage) and alizarin red– (bone) stained sternums and limbs prepared from (**A** and **B**) wild-type, (**C** and **D**) $En-1^{hd/hd}$, and (**E** and **F**) $En-1^{2ki/+2ki}$ newborn mice. In (C) and (D), the classic sternum disorganization (S), truncated xiphoid process (X), syndactyly (SY), and postaxial polydactyly (P) present in the $En-1^{hd/hd}$ newborn skeleton are indicated with arrows. In (E) and (F), the limbs and sternum of an $En-1^{2ki/+2ki}$ pup are indistinguishable from those of the wild-type pup.

En-1-specific fashion, a result that was not obtained with a conventional transgenic approach using En-1 promoter fragments to drive transgenes (8).

Aggregation chimeras giving germline transmission were obtained from one $En_1^{2k_i}$ -targeted ES cell line. These were bred with $En-1^{hd/+}$ heterozygous females to generate $En-1^{2k_i/hd}$ compound heterozygotes, and F_1 animals interbred to produce $En_1^{2k_i/2k_i}$ homozygous progeny. Mice with either genotype were viable and appeared normal.

To demonstrate that the recombination event had generated an En-1 null allele, 9.5-dpc embryos were collected from En-1^{2ki/+} intercrosses and genotyped. Protein extracts were prepared from individual embryo heads and bodies and analyzed by protein immunoblot with the Enhb-1 antiserum, which recognizes proteins encoded by both En-1 and En-2 (9). In wild-type embryos, En-1 (55 kD) and En-2 (41 kD) proteins were detected, as expected, in the head, and En-1 alone was detected in the body (Fig. 2E). $En-1^{2ki/+}$ heterozygotes showed En-1 and En-2 protein in both head and body, and En-1^{2ki/2ki} homozygous embryos expressed En-2 protein, but not En-1 protein, in the head and body. Thus, the targeting event generated a null allele for En-1, and En-2 protein was also present in the body, as expected if expression was controlled by the En-1 locus.

We confirmed that the pattern of En-2expression from the $En-1^{2ki}$ allele was like that of En-1 using whole-mount RNA in situ hybridization (10). En-2 RNA was detected in the anterior neural folds of two-somite-stage $En-1^{2ki/+}$ heterozygote embryos (Fig. 2C) but not in two-somite wild-type control embryos (Fig. 2D), although strong expression was detected in the anterior neural folds of six- to sevensomite wild-type embryos (8). In 9.5-dpc $En-1^{2ki/2ki}$ embryos, En-2 protein was detected with the Enhb-1 antiserum in the limbs, somites, and spinal cord, as well as in the brain (8).

To determine whether expression of En-2 fully rescued the brain and skeletal defects in animals lacking En-1, we examined skeletons and brains from newborn $En-1^{2ki/+}$ heterozygotes (n = 2), $En-1^{2ki/hd}$ compound heterozygotes (n = 4), $En-1^{2ki/2ki}$ homozygotes (n = 4), wild-type mice (n = 3), and $En \cdot l^{hd/hd}$ (n = 3) mice. In contrast to the disorganized sternums and limbs of En-1^{hd/hd} homozygotes (Fig. 3, C and D), the limbs and sternums of $En-1^{2ki/hd}$ (8) and $En-1^{2ki/2ki}$ pups appeared normal (Fig. 3, E and F). Furthermore, En-1^{2ki/2ki} homozygous newborn and adult brains appeared identical to those of wild-type littermates in whole-mount preparations and serial sagittal sections (Fig. 4). In summary, the En-2 and lacZ sequences targeted to the En-1 locus are expressed in En-1-specific tissues, and $En-1^{2ki/2ki}$ newborn and adult mice that express En-2 in place of En-1 appear phenotypically normal.

We have used a KI approach to demonstrate that the two En proteins in the mouse have retained common biochemical functions throughout evolution, by showing that mouse En-2 can substitute for En-1, both in the neural tube in which it is normally expressed as well as in regions, such as the limbs, that normally express only En-1. This is a direct demonstration in mammals of proteins that have acquired novel functions through divergence of gene expression rather than through divergence in biochemical function; a similar demonstration has been reported for *Drosophila* (11).

Taken together with the En-1 and En-2 expression data and mutant analysis, the results of our studies allow us to conclude that the deletion of mid-hindbrain struc-

Fig. 4. Analysis of brains from $En-1^{2ki'+2ki}$ mice. Intact brains and matched parasagittal sections through brains dissected from wild-type (**A** and **B**), $En-1^{h\alpha'h\sigma'}$ (**C** and **D**), and $En-1^{2ki'+2ki}$ (**E** and **F**) newborn mice are shown. Also

shown are matched sagittal sections through cerebellums of 6-week-old $En-1^{2ki'2ki}$ (G) and wild-type (H) mice. Sections were stained with hemotoxylin and eosin. The deletion of colliculi (CI) and the cerebellum (Cb) are indicated.

tures in En-1 homozygous mutants is a consequence of a lack of En gene function in the anterior neural folds between the one- and eight-somite stages. These results emphasize that early restricted gene expression reflects crucial genetic events that control regional brain development.

The KI approach has broad biological applications. With the appropriate choice of target locus, ectopic expression or gene transplant experiments can be carried out with a degree of control not afforded by the conventional transgenic approach. Such experiments are a necessary complement to elimination of gene function by mutagenesis, because loss of function may serve only to demonstrate that a developmental gene plays a role in the tissue in which it is expressed. Accurately regulated ectopic gene expression in vivo can generate viable mice exhibiting a gain-offunction phenotype (12). This can aid in determining the role of the gene in its normal environment or, as in these studies, can clarify the unique and overlapping functions of members of gene families. Because overlapping gene function is likely to be prevalent in mammals, such approaches are critical for determining the complete repertoire of functions of individual genes.

REFERENCES AND NOTES

- C. Logan *et al.*, *Dev. Genet.* **13**, 345 (1992); A. L. Joyner and M. Hanks, *Semin. Dev. Biol.* **2**, 435 (1991).
- A. P. McMahon, A. L. Joyner, A. Bradley, J. A. Mc-Mahon, *Cell* 69, 581 (1992).
- C. A. Davis, S. E. Noble-Topham, J. Rossant, A. L. Joyner, *Genes Dev.* 2, 361 (1988); C. A. Davis and A. L. Joyner, *ibid.*, p. 1736; D. Davidson, E. Graham, C. Sime, R. Hill, *Development* 104, 305 (1988).
- A. L. Joyner, K. Herrup, B. A. Auerbach, C. A. Davis, J. Rossant, *Science* **251**, 1239 (1991); K. J. Millen, W. Wurst, K. Herrup, A. L. Joyner, *Development* **120**, 695 (1994).
- W. Wurst, A. B. Auerbach, A. L. Joyner, *Development* **120**, 2065 (1994).
- 6. The En-1 homologous sequences present in the KI targeting vectors (Fig. 1) were provided by a 4.2-kb Xba I-Apa I 5' arm containing the En-1 promoter, together with a 4.0-kb Cla I-Sac I 3' arm (5), flanking either the coding sequence for En-2 [1.2-kb Eco RI-Bg III fragment (10)] or lacZ [3.0-kb Eco RI fragment, containing a consensus eukaryotic ATG (S. Darling, unpublished data)] together with the PGK-Neo cassette (5). The vectors also carried the herpes simplex virus TK gene driven by the PGK promoter (5), loxP sites were inserted to flank the PGK-Neo cassette to allow CRE-mediated excision of this selectable marker in the event that expression of the targeted En-1 locus was altered by its presence [R. Hoess, M. Zaise, N. Sternberg, Proc. Natl. Acad. Sci. U.S.A. 79, 3398 (1982); P. C. Orban, D. Chui, J. Marth, ibid. 89, 6861 (1992)]. R1 ES cells (2.5×10^7) [A. Nagy, J. Rossant, R. Nagy, N. W. Abromow, J. C. Roder, ibid. 90, 8424 (1993)] were electroporated with 300 µg of linearized En-2 or lacZ Kl vector. After 8 to 9 days of selection in G418 and gancyclovir, approximately 200 double-resistant clones were picked from each experiment, amplified, and screened for the correct targeting event by Southern blot analysis (Fig. 1) [W. Wurst and A. L. Joyner, in Gene Targeting, A Practical Approach, A. L Joyner, Ed. (Oxford Univ. Press, Oxford, 1993),

pp. 33–61]. Chimeric embryos from *lacZ*-targeted lines were generated by aggregation with diploid or tetraploid morulas, and mouse lines giving germline transmission of the $En-1^{2ki}$ allele were established by diploid aggregation [A. Nagy and J. Rossant, *ibid.*, pp. 147–180).

- C. Logan, W. K. Khoo, D. Cado, A. L. Joyner, *Development* **117**, 905 (1993).
- 8. M. Hanks and A. L. Joyner, unpublished observations.
- C. A. Davis, D. P. Holmyard, K. J. Millen, A. L. Joyner, Development 111, 287 (1991).
- R. A. Conlon and J. Rossant, *Ibid.* **116**, 357 (1992). The *En-2*-specific antisense probe was a 1.0-kb Cla I–Bg III fragment derived from the *En-2* complementary DNA (cDNA) [A. L. Joyner and G. R. Martin, *Genes Dev.* **1**, 29 (1987)].

- 11. X. Li and M. Noll, Nature 367, 83 (1994).
- M. Kessel, R. Balling, P. Gruss, *Cell* **61**, 301 (1990);
 M. H. Sham *et al.*, *ibid.* **72**, 183 (1993); M. Zhang *et al.*, *Development* **120**, 2431 (1994); J.Charité, W. De Graf, S. Shen, J. Deshchamps, *Cell* **78**, 589 (1994).
- 13. We dedicate this work to the memory of M. Breitman, for his enthusiasm, insight, and support. We also thank M. Kownacka and H. Park for technical assistance, S. Chu and K. Harpal for histology, and D. Fawcett and G. Fishell for critical comments on the manuscript, Funded by grants from the Medical Research Council (MRC) of Canada and Bristol-Myers Squibb. A.L.J. was a MRC Scientist and Howard Hughes International Scholar.

12 April 1995; accepted 15 June 1995

Role of the Ubiquitin-Proteasome Pathway in Regulating Abundance of the Cyclin-Dependent Kinase Inhibitor p27

Michele Pagano,* Sun W. Tam, Anne M. Theodoras, Peggy Beer-Romero, Giannino Del Sal, Vincent Chau, P. Renée Yew, Giulio F. Draetta, Mark Rolfe

The p27 mammalian cell cycle protein is an inhibitor of cyclin-dependent kinases. Both in vivo and in vitro, p27 was found to be degraded by the ubiquitin-proteasome pathway. The human ubiquitin-conjugating enzymes Ubc2 and Ubc3 were specifically involved in the ubiquitination of p27. Compared with proliferating cells, quiescent cells exhibited a smaller amount of p27 ubiquitinating activity, which accounted for the marked increase of p27 half-life measured in these cells. Thus, the abundance of p27 in cells is regulated by degradation. The specific proteolysis of p27 may represent a mechanism for regulating the activity of cyclin-dependent kinases.

The cyclin-dependent kinase inhibitor p27 (1) is present in maximal amounts during the quiescent (G_0) and prereplicative (G_1) phases of the mammalian cell cycle. The amount of p27 decreases as cells are induced to enter the cell cycle (2-4). Unlike all other mammalian cell cycle proteins studied so far, for which correlations have been found between the abundance of these proteins and changes in the amount of mRNA present (5), the decline in the amount of p27 occurs in the presence of constant amounts of mRNA and a constant rate of protein synthesis (3, 4). Thus, we investigated whether the intracellular regulation of p27 abundance involved the ubiquitin-proteasome pathway (6). We examined the effect of the peptide-aldehyde N-acetyl-leucinyl-leucinyl-norleucinal-H (LLnL), an inhibitor of the chymotryptic site on the proteasome (7), on the amount of cellular p27. As a

*To whom correspondence should be addressed.

control, we used the cysteine protease inhibitor L-*trans*-epoxysuccinic acid (E64).

Addition of LLnL, but not of E64 or a dimethyl sulfoxide (DMSO) vehicle, induced an accumulation of p27 protein after 60 min of treatment (Fig. 1A). In contrast, p21, another inhibitor of cyclindependent kinases, was not found to accumulate appreciably in LLnL-treated MG-63 cells, which lack the gene for the tumor suppressor p53. At later time points, we noticed that two antibodies to p27 that do not recognize the same epitope (8) both recognized a doublet with a relative molecular mass (M_r) of ~70,000. The p27 monoclonal antibody (mAb) also recognized a band of $M_{\rm r} \sim 100,000$ in the extract from the 22-hour LLnL time point. To determine whether these bands contained ubiquitinated p27, we immunoprecipitated lysates from LLnL-treated cells with either anti-p27 or control antiserum and then immunoblotted them with a ubiquitin mAb. The M_r 70,000 doublet and a group of slower migrating bands were detected by the ubiquitin mAb exclusively in the anti-p27 immunoprecipitates (Fig. 1A). Immunoblotting with a control antibody of similar immunoprecipitates did not visualize any band (8).

M. Pagano, S. W. Tam, A. M. Theodoras, P. Beer-Romero, G. Del Sal, G. F. Draetta, M. Rolfe, Mitotix Inc., 1 Kendall Square, Building 600, Cambridge, MA 02139, USA.

V. Chau, Department of Pharmacology, Wayne State University, Detroit, MI 48201, USA.

P. R. Yew, Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA.