
over the middle- and high-latitude conri- 
ne l~ t s  over the past clecade (Fig. 2 )  resemble 
sollie results o l i ta~neJ  hv coualed atmo- 
sphere-ocean models force2 with'steadlly in- 
creasing atmc~rpheric greenhouse gases (25),  
a1ii1 evidence suggests that the recent \\.arm- 
ing may be related to increasing tropical 
ocean relnuerarures that have led to an en- 
hai~cement  of the tropical hydrolog~c cycle 
( 1  2 ,  25). However, signif~cant decade-long 
changes in the atmospheric circulation, and 
in the N A O  in particular, have contrlhuted 
s~~hsta~l t ia l ly  to the regional \\.arming, com- 
pl~catilig the interpretation of the climate 
system response to ~ncreased greenhouse gas 
forciuo. Lkcadal variabilit-\. in the NXO has 
become especially pronounced since ahout 
1950 (Fig. lA) ,  but the causes for such vari- 
ability in the Atlantic are not clear. The  
relation of the  NAO to gree~ihouse gas forc- 
ing and possible links to coherent v? ,11ations .' 

in tropical Atlantic SSTs (27) need to be 
esamined, along with how well climate 
inodels simulate the NAO and its recent 
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Rescue of the En-1 Mutant Phenotype by 
Replacement of En-1 with En-2 

Mark Hanks," Wolfgang Wurst,? Lynn Anson-Cartwright, 
Anna B. Auerbach,f Alexandra L. Joynerf 3 

The related mouse Engrailed genes En-1 and En-2 are expressed from the one- and 
approximately five-somite stages, respectively, in a similar presumptive mid-hindbrain 
domain. However, mutations in En-1 and En-2 produce different phenotypes. En-1 mutant 
mice die at birth with a large mid-hindbrain deletion, whereas En-2 mutants are viable, 
with cerebellar defects. To determine whether these contrasting phenotypes reflect dif- 
ferences in temporal expression or biochemical activity of the En proteins, En-1 coding 
sequences were replaced with En-2 sequences by gene targeting. This rescued all En-1 
mutant defects, demonstrating that the difference between En-1 and En-2 stems from 
their divergent expression patterns. 

T h e  mouse Engraiied (En) genes En-1 and 
En-2 are the  murine members of a large 
conserved gene famlly related to the Dro- 
sophila segmentation gene engrailed (en). All 
EII genes ellcode proteins that contain a 
liomeodomain as well as four small, highly 
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conserved regions (1 ). However, outside 
these reglons, En proteins share little iden- 
tity across the  phyla. Overall, En-1 and 
En-2 protelns share approximately 55% 
amino acid ident~ty  with each other and 
approximately 35% identity w ~ t h  Drosophila 
En nrotein. 

En- i  expression is first detected during 
mouse enibryoge~lesis a t  the  one-soin~te  
stage, in  cells of the  anterior neural folds. 
En-2 expression, which occurs in  a similar 
region. initiates a t  the  five-somite stage 

L7 , 

but does no t  fully overlap with En-1 until 
approximately eight somites have formed 
( 2 ) .  Expression of both  genes continues in  
cells of the  ventricular layer of this pre- 
sumptive mid-hindbrain region. A t  9.5 
days post coitus (dpc ) ,  En- 1 expression 
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also is detectable in two ventrolateral 
stripes in the hindbrain and spinal cord, in 
the dermomyatome, in the ventral ecto- 
derm of the limb buds, and in sclerotomes 
(3). 

En-1 and En-2 are key regulators of 
neural development, and En-1 also plays a 
crucial role in normal patterning of the 
limbs and skeleton. En-2 mutant homozy- 
gous mice are viable and fertile but show 

Fig. 1. KI targeting strat- 
egy. (A) Top Rne, sche- 
matic of the &I-1 geno- 
mic lows. The En-7 pro- 
moter is indicated by the 
horizontal arrow, and the 
coding sequence flank- 
mng the single intron is 
s h ~  by the black box- 
es. The asterisk repre- 
sents the -7  pdy- 

an embryonic reduction in cerebellar size 
and postnatal alteration of foliation (4). 
In contrast, En-1 mutants (En-1 hdlM; hd, 
homeobox deletion) do not feed and die 
within 24 hours after birth (5). En-lMIM 
mutants exhibit a deletion of cells from 
the presumptive mid-hindbrain region 
that is obvious by 9.5 dpc, which results in 
loss of the third and fourth cranial nerves 
and of most of the colliculi and cerebel- 

adenylation signal. Mid- 
dle line, linearbsd &-2 
KI vector. The En-2 cod- 
ng sequence, sdembb 
neo- myth resistance (FGKNeo), and thymiine kinase (PGKnq 
cassett~~rtreshown.Thelodonsofhkud)sites~the 
PGKNeo cassette are depicted by black ellipses. Dashed l i i  indi- 
cate the regions of homolcgy b e W a  loaw and targeting e m .  
ThelacZKI vector contained theWcodhg sequencein pbceof 
En-2butwasothenrvlseidentical.Bottc~nIkle,struchrreoftargeted 
locus. After gene kuge4hg. the En-2 cDPIA sequence (or the hcZ 
s e q u e n c e i n l i i ~ ~ w i t t l t h e ~ K I v e c t 0 r ) i s i n s e r t e d  
~ntotheEn-1 locladowmeamoftheB-1 ~ . T h e f i r s t 1 1 1  
am1noaddsofi3-1 eredeleted, generatinganu#allele.Theorigiis 
of the5'and 3'probes(XmdY) usedtoidenwythetargetedoell 
l~nes are shawn. C, Ch I; H, Hind Ill; S, Sac I; and Xb, Xba I. (B) SarVlem blot 

lad-targeted cell lines and a 10.5-kb fragment for&-2-ta~eted dl lines (Uw 12.2- and 10.5-kb 
bandsappeartoco-migratebeceusetfieywerederfvedfnrmdifferent~; the 10-kbrmbrmarksrto 
lanes 2 and 3). Lane 1, lecz-targebd Hne: lane 2, G'I-2-targeted line; lane 3, wild-type ES cells. In Lenes 
4 to 6, DNA was digested with H i d  Ill and probed with Y (700-bp Eco M i  Ill fragment; external 
probe), giving a *-type 7.5-kb fragment and Wgeted 4.5-kb fragments for both brg@ed d lines. 
Lane 4, wild-type R1 ES cdls; lane 5, Eft-2-targeted line; lane 6, IacZ-targeted line. - 

lum. Skeletal defects of the limbs, 13th 
rib, and sternum also are apparent. 

Two obvious hypotheses could explain 
the difference between the En-1 and En-2 
mutant brain phenotypes, given the exten- 
sive overlap in protein expression and their 
high degree of stuctural similarity. First, in 
spite of their similar structure, these pro- 
teins may have acquired novel biochemical 
functions during evolution and so fulfill 
different roles within the same cells. Alter- 
natively, the proteins could be biochemical- 
ly equivalent, but the divergence in the 
temporal expression pattern between the 
two genes may have resulted in the expres- 
sion of a single En gene, En-1 , at the one- to 
six-somite stage (approximately). Hence, a 
mutation of En-2 would be largely compen- 
sated for by the presence of En-1, but not 
the converse. 

In order to distinquish between these 
two hypotheses, we used homologous re- 
combination in embryonic stem (ES) cells 
to functionally replace En-l with either 
En-2 or with lac2 (as a control) by insert- 
ing their coding sequences into the En-1 
locus (6). The targeting event brought the 
integrated sequences under the control of 
the En-1 promoter and endogenous regu- 
latory elements and at the same time in- 
troduced a null mutation in En-1 [the 
knock-in (KI) approach; Fig 11. We desig- 
nate these new En-l alleles En-lzki (2ki, 
En-2 knock-in) and En-lLki (Lki, lac2 
knock-in), respectively. Three ES cell 
clones targeted with En-2 and 14 clones 
targeted with lac2 were identified by 
Southern (DNA) blot analysis (Fig. 1). 

Chimeric embryos derived from two lac2 
targeted ES cell lines were stained directly 
with X-Gal (7) at 8.0, 9.0, and 11.5 dpc. 
lac2 expression was observed in the anterior 
neural folds of 8.0-dpc chimeras (8) and in 

rw. 2 Expression of integrated lacZ 
and ti?-2 sequences in ernbyos de- 
rived fnrm &c.Z-tar@d and En-2- 
tmptedESdl i i ,  respectively,@ 
a n d ( B ) s h o w ~ o f l a c Z i n  

g r e @ t i o n d a l e c Z - ~ E S ~  
line with a wild-type moruta. (AJ A 9.0- 
dpcchimericembFpstainedwMlx- 
Gal. Strong axpression is seen in the 

ectodermoftheforelknbbud(R).The b E +k&S(,&!&L 
mid-hindbrain region (M) and vsntral 

f e w s o m i t i c c e l l s ~ & t h i s ~  
are mdhted by an m. (8) An 
1 1 . 5 - d ~ ~  &din& er&fyo sarmd 1- bl-- 

w i t h X - G a l . ~ ~ i s s e e n i n  i .  EM-  
thernid-~region,posteriorhindbrain,spkraleord,somite-derhredtissue 1 2 3 4 5 6  

(arrow), f o r m  buds 0, and hindhb budti (HI). (C) h situ whde moutts of a 
one- to two-somite En-lW+ embryo and (D) a wildtype embryo probed with protein extracts prepared from 9.5-dpc embryonic heeds 0 and bxbs  (B), 
anEn-Zpecificantisensesequence.En-Z~isseenintheanterior probedwithEd&-lantissnm.Lanes1 and2,wildtype;Lanes3and4, 
newal fokls of the &-IM+ ernkyO but not the wild-type stage-matched En-?=+; lanes5and6, G'I-72W+2kemkyos. En-2 protein is detected in both 
contrd. A portion of the extra embryol7ic membranes remahing after assection heads and bodies of&- fW+ End En- lW+* embryos, but Only in the head of 
WSS removed fnxn the lnage with- Photoshop. (E) Protein immunobbt of the wild-type embryos, and no En-1 protein is detected in h - l w + 2 W ~ .  
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the mid-hindbrain, spinal cord, somites, En-l-specific fashion, a result that was not 
and limbs of 9.0-dpc and 11.5-dpc chimeras obtained with a conventional transgenic 
(Fig. 2, A and B). Thus, the integrated lac2 approach using En-1 promoter fragments to 
sequence was accurately regulated in an drive transgenes (8). 

Aggregation chimeras giving germline 
transmission were obtained from one En- 
I 2'-targeted ES cell line. These were bred 
with En-lMI+ heterozygous females to gen- 
erate En-1 2wM compound heterozygotes, 
and F, animals interbred to produce En- 
l2'I2' homozygous progeny. Mice with ei- 
ther genotype were viable and appeared 

To demonstrate that the recombination 
event had generated an En-I null allele, 
9.5-d~c e m b ~ o s  were collected from En- 

Fig. 3. Alcian blue (cartilage) ana aluann red- 
(bone) stained sternums and limbs prepared from 
(A and B) wild-type, (C and D) En-1-, and (E 
and F) En-12W+2b newbom mice. In (C) and (D), 
the classic stemum disorganization (S), truncated 
xiphoid process (X ) ,  syndactyly (SY), and postax- 
ial polydactyly (P) present in the En-lw new- 
bom skeleton are indicated with arrows. In (E) and 
(F), the limbs and stemum of an En-1w+2b pup 
are indistinguishable from those of the wild-type 
PUP. 

IZW+ intercrosses and genotyped. Protein 
extracts were prepared from individual em- 
bryo heads and bodies and analyzed by pro- 
tein immunoblot with the Enhb-I antiser- 
um, which recognizes proteins encoded by 
both En-1 and En-2 (9). In wild-type em- 
bryos, En-1 (55 kD) and En-2 (41 kD) 
proteins were detected, as expected, in the 
head, and En-1 alone was detected in the 
body (Fig. 2E). En-lZw+ heterozygotes 
showed En-1 and En-2 protein in both head 
and body, and En-I 2w2' homozygous em- 
bryos expressed En-2 protein, but not En-1 
protein, in the head and body. Thus, the 
targeting event generated a null allele for 
En-1, and En-2 protein was also present in 
the body, as expected if expression was con- 
trolled by the En-I locus. 

We confirmed that the pattern of En-2 
expression from the En-1 2' allele was like 
that of En-1 using whole-mount RNA in 
situ hybridization (10). En-2 RNA was 
detected in the anterior neural folds of 
two-somite-stage En-1 2'1+ heterozygote 
embryos (Fig. 2C) but not in two-somite 
wild-type control embryos (Fig. 2D), al- 
though strong expression was detected in 
the anterior neural folds of six- to seven- 
somite wild-type embryos (8). In 9.5-dpc 

En-lZwZki embryos, En-2 protein was de- 
tected with the Enhb-I antiserum in the 
limbs, somites, and spinal cord, as well as 
in the brain (8). 

To determine whether expression of 
En-2 fully rescued the brain and skeletal 
defects in animals lacking En-1, we exam- 
ined skeletons and brains from newborn 
En-lZw+ heterozygotes (n = 2), En-1 2wM 

compound heteroz~gotes (n = 4), ~ n - 1 ~ ~ ~ '  
homozygotes (n = 4), wild-type mice (n = 
3), and En-IMIM (n = 3) mice. In contrast 
to the disorganized sternums and limbs of 
En-lMIM homozygotes (Fig. 3, C and D), the 
limbs and sternums of En-lZwM (8) and 
En-1 2w2' pups appeared normal (Fig. 3, E 
and F). Furthermore, En- 1 2w2' homozygous 
newborn and adult brains appeared identi- 
cal to those of wild-type littermates in 
whole-mount preparations and serial sagit- 
tal sections (Fig. 4). In summary, the En-2 
and lacZ sequences targeted to the En-I 
locus are expressed in En-I-specific tissues, 
and En-lZw2' newborn and adult mice that 
express En-2 in place of En-1 appear phe- 
notypically normal. 

We have used a KI approach to dem- 
onstrate that the two En proteins in the 
mouse have retained common biochemi- 
cal functions throughout evolution, by 
showing that mouse En-2 can substitute 
for En-1, both in the neural tube in which 
it is normally expressed as well as in re- 
gions, such as the limbs, that normally 
express only En-1 . This is a direct demon- 
stration in mammals of proteins that have 
acquired novel functions through diver- 
gence of gene expression rather than 
through divergence in biochemical func- 
tion; a similar demonstration has been 
reported for Drosophila (1 1 ). 

Taken together with the En-1 and En-2 
expression data and mutant analysis, the 
results of our studies allow us to conclude 
that the deletion of mid-hindbrain struc- 

Fig. 4. Analysis of brains from En-law+= mice. Intact brains and matched shown are matched sagittal sections through cerebellums of Qweek-OM 
parasagittal sections through brains dissected from wild-type (A and B), En-12- (G) and wild-type (H) mice. Sections were stained with hemotoxylin 
E n - W M  (C and D), and En-12W+m (E and F) newborn mice are shown. Also and eosin. The deletion of colliculi (CI) and the cerebellum (Cb) are indicated. 
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tures 111 ETI-1 l ~ ~ n ~ ( ~ z j ~ ( ~ ~ i s  lnutants 1s a 
consequence of a lack of En gene function 
In the anterlor neural folds hetn'een the  
one- and e~ght-sornite stages. These res~ilts 
emphasze that early restricted gene ex- 
presslon retlects crucial genetic events 
that control regional h r a ~ n  del-elopment. 

T h e  KI approach has broad b ~ o l o e ~ c a l  
L L 

a ~ p l l c a t ~ o n s .  Wit11 tlie appropriate clholce 
of target locus, ectoplc expression or gene 
transplant esperiments can he carried out 
~ m t h  a degree of control not  affordeJ hy 
the conventional transgenic approacli. 
S L I C ~  experiments are a necessary comple- 
ment to e l i m ~ n a t ~ o n  of pene f ~ i n c t ~ o n  hv - 
mmitagenesls, because loss of function may 
serve onli- to delllonstrate that  a develolr- 
nlental uene plays a role in the  tlssue 111 - L ,  

which 1t is expressed. Acc~irately regulated 
ectopic gene espression in  V I V O  can gen- 
erate v ~ a b l e  mice exh1hiting a gain-of- 
f~ lnc t lon  phenotype ( 12) .  T h ~ s  can a ~ i l  111 

deterrnlning the  role of the  gene in ~ t s  
normal e n \ . ~ r o n ~ n e n t  or,  as in these stud- 
les, can clarif\- t he  unlcjrle and overlapping 
f~lnct lons  of Inemhers of eene f a m ~ l ~ e s .  

0 

Because overlapping gene t i ~ n c t ~ o n  1s l~ l t e -  
lv to  he cre\.alent 111 mammals, such aa-  
proaches are critlcal for cleterruin~ng the  
complete repertolre of func t~ons  of ~ n d ~ -  
vl ih~al  genes. 
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Cal I-g, ~ , n p - ~ b I  shec data,] tcgether:y~th the FGK- 
Nec cassette 31 The\!ecto~s also carred ttie hep- 
pes s'l-ipex v r ~ s  TK gere dl ver b!? the FGK prc- 
rnoter 5 :  #ox? s tes It,ele I-serted to flank the 3SK-  
Neo cassette to allov, CRE-11-~ediated ~ X C I S ' O I -  c i  
th s seec 'a te  ~ n a l  kel i the e'!ert that expressc i 
of the targetec h- '  ccus .,as aterec 131 its pres- 
erce 1R. i o e s s  V Zase N. Sterrberg ?roc. ,\8:l. 
Acad Sc, 2.S.A 79, 3358 11982:; F C. Grbal-, C 
C t i ~ l .  ,. Ivlarh. ,n,c! 89, 6861 :19"'1]. P I  ES c e s  
12 5 x -0:: [A. N a p ,  J Rossal-t, R Nagy, N. V:'. 
Atrcmo~t,. J C Pcdel ,b,o 90. 8421 :1553)1 wele 
electrcpcratec :; th 3G0 I J . ~  of rearized El:-2 or 
IacZ K vectcr. Artel 8 to 9 days c i  selectcr n C118 
and gal-cyccv r applcx mate:" 2GO d c k  e-ress- 
tart  c o i es : ye~e  p c<ed frol-I each exper ment at-1- 
I J I ~  ec a rc  screened fcr the cc~rect  talcet 1-2 e'!e~it 
by Scbtliern b c t  ara!+s s F IC  1 J [V:i, bS'~.rst 3 rd  A 
- Jo:+nel, ,i GPI:~ T;ije:,~:g, A Pmc:~calAoo;oacl~ 
A L Joyner Ec lOxicrd Un\! Press Oxfcrd, 19531, 
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teirapo d moruas, and Ir,cL.se n e s  2 1 ~ .  nc g e r l r n e  M. H. S l i a l ~  eta/. Gld. 72, 183 i1593): M Zhang e: 
tlansl--1ss on of ti-e E r - i 2 '  a l ee  VOEIE es ta tshed a / .  3eveloc1vert 120 243' (1993:: J.Cia1 t e  V:' 
131 d ' p o d  agcregatcn 1A Nagy and J. Fcssant 
ID'C! . pp 147-- 80: 
C. Lcgan, b5'. 4 Khoo D Cadc. A. L Joynel. Devel- 
oorler: 11 7 9C5 i1 333:. 
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Role of the Ubiquitin-Proteasome Pathway 
in ~egulating Abundance of the 

Cyclin-Dependent Kinase Inhibitor p27 
Michele Pagans," Sun W. Tam, Anne M. Theodoras, 

Peggy Beer-R~mero, Giannino %)el Sal, Vincent Chau, 
P. Renee Yew, Giulio F. Draetta, Mark Rolfe 

The p27 mammalian cell cycle protein is an inhibitor of cyclin-dependent kinases. Both 
in vivo and in vitro, p27 was found to be degraded by the ubiquitin-proteasome pathway. 
The human ubiquitin-conjugating enzymes Ubc2 and Ubc3 were specifically involved in 
the ubiquitination of p27. Compared with proliferating cells, quiescent cells exhibited a 
smaller amount of p27 ubiquitinating activity, which accounted for the marked increase 
of p27 half-life measured in these cells. Thus, the abundance of p27 in cells is regulated 
by degradation. The specific proteolysis of p27 may represent a mechanism for regulating 
the activity of cyclin-dependent kinases. 

T h e  cycl~n-dependent  kinase 111111111tor 
p 2 i  ( 1 )  1s present in ~ l l a s i~ l l a l  amounts 
d u r ~ n g  the  cjrl~escent ( C c )  and prereplica- 
ti\-e ( C , )  phases o t  the  malnmaliali cell 
cycle. T h e  anlount o t  p77 decreases as 
cells are ~ n d u c e d  to  enter the  cell cycle 
12-1). U n l ~ k e  all other lnalnlnal~an cell 
cycle protems stud1eJ so tar, for n-liich 
corre la t~ons ha\-e heen founil 1~etn;een the  
abundance of these proteins and changes 
Ln the  amount a t  mRNA present (5), t he  
decline Ln the  amount o t  LTL; occurs in  the  
presence of constant amounts of m R N A  
and a constant rate of protein s\-nthesls ( 3 ,  
4). Thus. 1a.e unvest~eated .i\;hether the  in- 

L- 

tracellular regulat~on of p77 abundance 
ui\;ol\.eJ the  uhiqurtin-proteas(>111e patli- 
way ( 6 ) .  LVe esamirneil t he  effect o t  the  
peptide-alcieliyilt. ; \ r -acet~- l - leuc~~~yl- l t .uc~-  
nyl-nurleuci~~al-El (LLnL), an i n h i b ~ t o r  of 
the  chymotryptic slte ,311 the  proteasorne 
17), 011 the  amount  o t  cellular n77. As a 

cuntrol,  nre used the  cysteine protease 111- 

l i i h~ to r  L- t~c i~ l s -eposys~~cc i~ i i c  aclcl (E64) .  
A d d ~ t l o n  of LLnL, hut no t  of E64 or  a 

d ~ m e t h y l  sulfoxiLle (LILISO) v e h ~ c l e ,  in- 
duced a n  accumulation of pL7 protein at- 
ter 60  n u n  o t  treatlnent (Fiy. 1 X ) .  In 
contrast, $1, another i n h i h ~ t o r  of cyclin- 
Llepenilent klnases, n a s  not  fi~unil  to accu- 
mulate aL>prec1ahly in LLnL-treateil LIG- 
61  cells, which lack the  oene for the  tumor 
suppressor P S I  A t  later timc p o ~ n t s ,  n.e 
noticed tliat t ~ v u  antthodies to $7 tliat do 
not  recogn~ze the  same epitope (8) both 
recogni;ed ,I doublet n i t h  a relative mo- 
lecular Illass (hi,) of -70,000. T h e  p27 
~nolioclonal antibocly ( m A h )  ,ilso recog- 
nizeLi a hanJ  of Mr  -1L?L?,L?GL? in the  e s -  
tract frorn the  72-hour LLnL time polnt.  
T o  Lletermine \vhether these bands con- 
tamed uhi i iu~t~nate i l  pL7, n.e Immunopre- 
clpitated lysates from LLnL-treated cells 
w ~ t h  either ant i - r27 or  control antiserum 
and then  ~mmunobl~ i t t e i l  them \\.it11 a 

M. 3agarc, S. V*! Tar-i, A. \)I Tnecdcras F. 6eer - io -  
G DeI Sa,  G, -, Craet+a, Rcl-e, Ivltotx Ire, L I ~ ~ L ~ L I I ~ L I I  mAb.  T h e  L'f, 79,000 Jouhlet 

Kercall Sqbale. E ~ d l n c  GGG, Cat-ibl~dge IvlA 02-39, and a group of slo\ver lnigrating hands 
USA. nere  cletected by the  uli~quitun mAb e r -  
V. Chau Departlnent of 31iar~naccloc.!+, ?':ay,ie State 
C11iverst:~, Detrc~t, ' L  4E201 USA elusively in  the antiLp77 immunuprecipi- 
F P Decarlnei t  c f  ~ c o ( I \ ' ,  i an ' a l c  'Jedca tates (Fig. 1 X ) .  ~m111~111ob~otti1lg \\.lth a 
Schcol, 3ostc1-. IdA C i -  - 5. USA control antikioily uf s ~ ~ n i l a r  1mmuni3pre- 
'Tc ',vhc,n correspoice~ice sho~l:I be acdressec! c l p l t a t e ~  diLl not  visualize any band (8). 

SCIENCE \'C>L. 16') .t AUGUST 1'19; 




