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Observation of Stable Shapes and Conformal
Diffusion in Genus 2 Vesicles

Xavier Michalet* and David Bensimon

The observed equilibrium shapes of phospholipid vesicles of topological genus 2 (shapes
with two holes) are found to be in agreement with theoretical predictions on the basis of
a minimization of the elastic curvature energy for fluid membranes under the constraints
of constant area, volume, and area difference (between the inner and outer layers of the
membrane). For some particular geometrical characteristics, the shapes of the vesicles
change continuously and randomly on a slow time scale (tens of seconds) and thus exhibit
conformal diffusion. This phenomenon is a reflection of the conformal degeneracy of the
elastic curvature energy. Its observation sets a limit (three constraints) on the number of
physical constraints relevant to the determination of the shapes of vesicles.

Phospholipid vesicles are closed fluctuat-
ing bags (less than a few micrometers in
size) whose surfaces are made of phospho-
lipid molecules organized in a membrane, a
fluid bilayer structure a few nanometers
thick. These vesicles, also known as lipo-
somes and used as such in a number of
applications (from cosmetics to pharmacol-
ogy), are often studied as a simplified model
of the cell membrane. They are easily
formed from a sample of phospholipids dis-
solved in water and can be observed by
phase-contrast microscopy (1). Under-
standing the shapes of these vesicles is a
crucial test for the validity of the various
physical models that describe fluid mem-
branes. This has been an active experimen-
tal field since the mid-1970s when the first
models were proposed as an explanation for
the various shapes of red blood cells that
had been observed (2). These models are all
based on an elastic description of the fluid
(shearable) membrane, its energy being

E_K 1 1)\’

where k is the elastic modulus, R, and R,
are the local principal radii of curvature of
the membrane (3), and S is the differential
surface element.

The shape of the vesicle can be deter-
mined by minimizing its elastic curvature
energy under various physical constraints,
among which its area A and volume V are
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the most obvious. However, these are not
sufficient to account for all the vesicle
shapes that have been observed, for exam-
ple, the variety of red blood cell morphol-
ogies. To account for those cases, other
constraints have been introduced, such as
a spontaneous curvature (which might re-
sult from a bilayer asymmetry) or a con-
straint on the area difference AA between
the inner and outer layers of the mem-
brane [which could be constant as a result
of a very low rate of lipid exchange (flip-
flop) between the two layers], or a combi-
nation of both (4—6). Recently Jiilicher,
Seifert, and Lipowsky (JSL) pointed out
that the number of relevant constraints
could be determined to be three on the
basis of the observation in vesicles of to-
pological genus 2 or higher (that is, shapes

Fig. 1. Some of the absolute minimal shapes of
topological genus 2 (shapes with two holes) for the
elastic curvature energy (Eg. 1). These shapes can
be obtained by special conformal transforms
(SCTs) of the Lawson surface L; SCTs are defined
by l-Bel, where B indicates the translation of vector
b, and lis the sphere inversion with its center at the
origin of coordinates (7, 9). For the sake of com-
modity, we start from the “‘button’’ surface B. With
b parallel to the z axis, B [(v,Aa) = (0.68,1.068)] can
be continuously transformed into L [(v,Aa) =
(0.67,1.021)], which has a threefold symmetry
axis, and finally into a sphere with two infinitesimal
handles (a ‘‘genus 2 sphere”) [(v,Aa) = (1,1)], go-
ing through surfaces of the LS kind shown here.
With b parallel to the x axis, it is possible to contin-
uously reach a genus 2 sphere going through sur-
faces of the BS, kind; the same is true for b parallel
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with two holes or more) of a new phenom-
enon, which they called conformal diffu-
sion (7). Here, we report the observation
of this phenomenon.

To understand the possible shapes of
vesicles, it is helpful to first consider the
invariance properties of their elastic curva-
ture energy (Eq. 1). This energy is obviously
invariant under translations and rotations.
It is also invariant under dilations. Indeed,
if we scale a vesicle (if it is spherical, its
radius) by a factor a, because its area in-
creases as o, its overall energy and shape
remain unchanged. This invariance has an
important consequence: The number of rel-
evant geometrical characteristics is reduced
by one, and adimensional parameters are
defined as the reduced volume v and the
reduced area difference Aa (8). Another
more subtle property of the energy is its
invariance with respect to sphere inver-
sions. A sphere inversion is defined simply
by choosing an inversion center O and
“inverting” the distances (9). In contrast
with the previous symmetries, the sphere
inversions, although they may preserve the
energy of a vesicle, may alter its shape. All
of these transformations combined—trans-
lations, rotations, dilations, and inver-
sions—form the group of three-dimensional
conformal transformations, and, as just ex-
plained, the elastic curvature energy does
not change as a result (that is, it is confor-
mally invariant).

In particular, the state of minimal elastic
curvature energy (the ground state) is con-
formally invariant. For vesicles of spherical

to the y axis and surfaces of the BS, kind. Shapes were calculated with the SURFACE EVOLVER program
(7). This figure was inspired by a similar figure published in (7), which was based on a different numerical

algorithm.
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topology this ground state is the sphere,
which remains a sphere under any three-
dimensional conformal transformation. For
the toroidal topology (surfaces of topologi-
cal genus 1 or shapes with one hole) the
Clifford torus, a particular axisymmetric
doughnut, is an absolute minimal-energy
shape (10). It is not unique. Upon inver-
sion, it can be deformed continuously into a
nonaxisymmetric, one-parameter family of
minimal-energy tori known as the Dupin
cyclides. The ground state of genus 1 shapes
is thus degenerate. This degeneracy is, how-
ever, raised with the introduction of physi-
cal constraints, such as v, which selects one
particular family member for each value
0711 <w < 1 (11, 12).

For vesicles of topological genus 2, the
ground state is the Lawson surface L (Fig. 1)
and its conformal transforms (13). Because
of the low symmetry of L, the minimal sur-
faces form in this case a three-parameter
family ‘W (14). JSL pointed out that if two of
these degrees of freedom are enough to sat-
isfy the relevant constraints, then one de-
gree of freedom remains to continuously de-
form the shape while preserving its elastic
curvature energy and the constraints. This
means, for example, that for certain values
of v and Aa there exists a one-parameter
family of vesicles with minimal energy. Be-
cause it costs them no energy, these vesicles
are expected to randomly explore the vari-
ous shapes of their family, a process called
conformal diffusion. Because this process re-
quires redistribution of fluid volumes, these
vesicles will evolve on a long hydrodynamic
time scale (tens of seconds), which can be
differentiated from the fast (subsecond)
thermal fluctuations of their membranes.

For geometrical constraints not reached
by the degenerate ground state ‘W', a unique
stable shape is expected (15). Our observa-
tions fully confirm these predictions. Fig-
ures 2, 3, and 4 present observations of
vesicles of genus 2 with a unique stable
shape. The “button”-like vesicle shown in
Fig. 2 has been reported by our group (12).
In Fig. 2 we compare its shape with a direct
numerical minimization of the energy (Eq.
1) under the constraints v = 0.52, Aa =
1.17. The good agreement between the ob-
served and calculated shapes and the fact
that the corresponding calculated elastic
curvature energy is higher than the ground-
state (W) energy support the arguments of
JSL presented above. This agreement is fur-
ther confirmed in Figs. 3 and 4, in which
our observations are compared with a nu-
merical minimization of Eq. 1 under appro-
priate constraints. Other stable shapes with
different symmetries have also been ob-
served, in agreement with the theoretical
predictions of JSL.

Conformal diffusion is expected for ves-
icles whose geometrical parameters are

Fig. 2. Genus 2 button-
like vesicle (18, 19): (A)
top view, (B) side view, (C)
front view. Scale bar, 10
pm. For comparison, the
numerically  equilibrated
surface that minimizes the
elastic curvature energy £
[with constraints (v,Aa) =
(0.52,1.17)] is shown as a
wire frame oriented in the
corresponding directions
with respect to the ob-
server. These values do
not belong to the ‘W do-
main calculated by JSL
(Ecac/8mk = 2.13 > E,,/8wk =~ 1.75), which explains the stability of this vesicle. The symmetnes of the
vesicle are in agreement with the predictions of JSL for these (v,Aa) values.

Fig. 3. Genus 2 vesicle: (A)
top view, (B) side view, (C)
front view. Scale bar, 10 pm.
In comparison, the numerical
surface represents the SCT of
the minimal button surface B
of Fig. 1 with vector b =
(0,0,1.4/R,), that is, an inter-
mediate surface between B
and L, which lies on the
boundary of the ‘W' region (7)
[(v,Aa) = (0.69,1 029) E/8mx
~ 1.75; Ry = VA/4n].

Fig. 4. Genus 2 Lawson-like
vesicle, with an approximate
D3, symmetry: (A) top view,
(B) vertically tilted threefold
symmetry axis, (C) fully titted
threefold symmetry axis.
Scale bar, 10 pm. We did not
try to find its geometrical pa-
rameters. Corresponding
views of the exact Lawson
surface L of Fig. 1 are shown
as an aid in visualizing the ori-
entation of the vesicle with re-
spect to the optical axis
[(v,Aa) = (0.67,1.021); E/8mk
~1.75].

Fig. 5. (A through E)
Conformal deformation
of a genus 2 vesicle
(elapsed time between
images, ~30 s). Scale
bar, 10 pm. For compar-
ison, numerical shapes
belonging to the same
one-parameter family of
absolute minimal shapes
are shown. They were ob- =
tained by a succession of SCTs that preserved (v,Aa), as duscussed in (7), starting from a(o. 7/F.’0,O 1.4/Ry)
transformed button B [(v,Aa) = (0.67,1.025); E/8wx = 1.75].
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reached by the ground state W. In Fig. 5
(top), successive images, ~30 s apart, of the
same vesicle indicate that it exhibits clear
changes in shape. This sequence is com-
pared with the numerically equilibrated sur-
faces within the W family shown in Fig. 5
(bottom), all of which have the same geo-
metrical parameters (v,Aa) and of course
the same minimal energy. The very long
time scale of the observed deformation
mode demonstrates that this is not a ther-
mally excited bending mode, the time scale
for which is typically less than a second
(16). We conclude that this deformation is
a zero-energy mode and thus is experimen-
tal evidence of conformal diffusion. We
have generalized these observations to ge-
nus 3 vesicles, although the description of
conformal diffusion for these vesicles is
much more delicate.
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Two-Dimensional Imaging of Potential Waves
in Electrochemical Systems by
Surface Plasmon Microscopy

Georg Flatgen, Katharina Krischer,” Bruno Pettinger,
Karl Doblhofer, Heinz Junkes, Gerhard Ertil

The potential dependence of resonance conditions for the excitation of surface plasmons
was exploited to obtain two-dimensional images of the potential distribution of an elec-
trode with high temporal resolution. This method allows the study of spatiotemporal
patterns in electrochemical systems. Potential waves traveling across the electrode with
a speed on the order of meters per second were observed in the bistable regime of an
oscillatory electrochemical reaction. This velocity is close to that of excitation waves in
nerve fibers and is far greater than the velocity of reaction-diffusion waves observed in

other chemical systems.

All disciplines of science exhibit the phe-
nomenon of spontancous formation of spa-
tiotemporal patterns from an originally ho-
mogeneous state (1). In chemical systems,
spatial patterns may develop if an autocat-
alytic reaction is coupled to diffusion of the
reacting species. These systems can be de-
scribed by reaction-diffusion equations and
have been intensively investigated (2).
However, diffusion is not the only mecha-
nism by which information can be passed
on. For example, in nerve fibers, excitation
states propagate as a result of electric trans-
port phenomena. This is also true in elec-
trochemical systems, where potential gradi-
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ents are responsible for communication be-
tween different parts of the electrode. The
coupling of the electrode kinetics to the
bulk electrolyte, which is electroneutral,
leads to phenomena that are qualitatively
different from those expected in systems
that can be described by reaction-diffusion
equations (3). To date, the investigation of
these patterns has been hindered by a lack
of suitable experimental techniques. Here,
we present images of two-dimensional (2D)
potential waves in an electrochemical sys-
tem. They were obtained with surface plas-
mon (SP) microscopy, a newly developed
method for the study of rapid spatial varia-
tions at electrochemical interfaces.

In electrochemical systems, spatial pat-
terns are composed of different voltage drops
across the electrode-electrolyte interface





