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Induction of MHC Class I Genes in Neurons 
Harald Neumann, Adolfo Cavalie, Dieter E. Jenne, 

Hartmut Wekerle* 

Whether neurons express major histocompatibility complex (MHC) class I genes has not 
been firmly established. The techniques of confocal laser microscopy, patch clamp 
electrophysiology, and reverse transcriptase-polymerase chain reaction were combined 
here to directly examine the inducibility of MHC class I genes in individual cultured rat 
hippocampal neurons. Transcription of MHC class I genes was very rare in neurons with 
spontaneous action potentials. In electrically silent neurons, transcription was noted, with 
expression of p,-microglobulin under tighter control than in class I heavy chain molecules. 
Surface expression of class I molecules occurred only in electrically silent neurons treated 
with interferon y. lmmunosurveillance by cytotoxic T cells may be focused on functionally 
impaired neurons. 

MHC class I heavy chain molecules are 
45-kD integral membrane glycoproteins 
that assume their correct conformation af- 
ter noncovalently binding P2-microglobu- 
lin. This complex binds antigenic peptides 
for presentation to CD8+ T cells ( I  ). MHC 
class I molecules are expressed in most tis- 
sues, an exception being the healthy central 
nervous system (CNS). But the inability of 
CNS cells to express MHC class I products 
is by no means absolute. Glial components 
of the CNS can be readily induced to pro- 

duce MHC determinants in vitro, or, under 
pathological conditions, in vivo. In con- 
trast, MHC inducibility in normal neurons 
has not yet been demonstrated beyond 
doubt (2). The intricate association be- 
tween CNS glia and neurons had made it 
impossible to resolve the issue by conven- 
tional morphology or molecular technology. 
Whether neurons are able to synthesize 
MHC class I products, and thus present 
antigen to T cells, is of clinical importance. 
In viral infections of the CNS, for example, 

I -GAPDH 
-P2-m~croglobulin 
-MHC -Primer I heavy chain 

Fig. 1. RT-PCR analyses of MHC class I heavy chain, p,-microglobulin, and GAPDH transcripts of (A) 
untreated, (B) IFN-y-treated, and (C) IFN--y- plus TTX-treated neurons. Only after treatment with l F N y  
plus TTX did all neurons express mRNA of p,-microglobulin and MHC class 1 (7, 10). DNA molecular 
weight markers and PCR control reactions without the cDNA sample are shown in lanes M and N, 
respectively. 
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neurons lackine MHC molecules could u 

serve as reservoirs for persistent viruses (3), 
while MHC-expressing neurons could be 
eliminated by virus-specific cytotoxic T 
cells. 

To  establish the conditions under which 
MHC class I genes are inducible in neurons, 
we analyzed the expression of mRNA for 
MHC class I heavy chain and &micro- 
globulin in single hippocampal neurons in 
different states of activity. Following the 
strategy of Lambolez et al. (4) ,  we used 
whole-cell patch-clamp to identify and 
functionally characterize individual neu- 
rons. Negative pressure was then applied to 
the micropipette to extract minute samples 
of cvto~lasm. which contains sufficient , L 

mRNA to assess by reverse transcriptase- 
polymerase chain reaction (RT-PCR) the 
gene repertoire currently being transcribed. 

The cells investigated were morphologi- 
cally and electrophysiologically differentiat- 
ed, pyramidal-shaped neurons from h i p  
pocampal cultures of Lewis rats (5). Typical- 
ly, after 10 to 14 days in culture, the h i p  
pocampal neurons responded to depolarizing 
current pulses with sodiumdependent fast 
action potentials (6). About half of these 
neurons showed spontaneous firing of action 
potentials, and we classified as "active" those 
neurons that spontaneously fired at least one 
action potential per minute; neurons with- 
out spontaneous action potentials within 5 
to 10 min were classified as "silent." 

The neuronal nature of the cells was as- 
certained in each case by their electrophysi- 
ological characteristics and was confirmed by 
detection of mRNA for microtubule-associ- 
ated protein 2 (MAP2), a neuron-specific 
cytoskeletal protein. In contrast, amplifica- 
tion of complementary DNA for the astro- 
glial marker gene glial fibrillary acidic pro- 
tein (GFAP) was negative in all of these 
neurons but was unfailingly found in astro- 
cytederived samples (7). The analysis of the 
extracellular solution from the cell culture 
after cytoplasms were harvested did not re- 
sult in amplification of PCR products. With 
few exce~tions. RT-PCR am~lification of 
mRNA samples of patch-clamped neurons 
provided unequivocal signals for the house- 
hold gene, glyceraldehyde-3-phosphate de- 
hydrogenase (GAPDH), a control for quality 
and quantity of the cytoplasmic RNA sam- 
ple (Fig. 1). Authenticity of amplified PCR 
products was verified by restriction site anal- 
yses and direct sequencing (8). Messenger 
RNA for Pz-microglobulin was detected in 1 
out of 10 "active" and in 1 of 11 "silent" 
neurons. MHC class I heavy chain mRNA 
was expressed in 3 of 10 "active" and 8 of 11 
"silent" neurons (Table 1). Only one of the 

Department of Neuroimmunology, Max Flamk Institute 
for Psychiatry, 821 52 Martinsried, Germany. 
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Table 1. MHC class I heavy chain and p,-microglobulin mRNA expression in single cells. "-" indicates 
no treatment. 

Cells positive for mRNA for 

Cell type Bioelectric 
status Treatment PP- MHC class I 

microglobulin heavy chain 

Neurons 
Neurons 
Neurons 
Neurons 
Neurons 
Neurons 

Neurons 
Astrocytes 

Active 
Silent 
Active 
Silent 
Paralyzed 
paralyzed 

Paralyzed 
- 

- 
IFN-y 
IFN-.)I 
IFN-.)I + TTX 
IFN-y + TTX + 

IFN-y antibodies 
TTX 

Fig. 2 Suppression of bioelectric ac- A 
t i i  of IW-y-treated hippocampal 
neurons by TTX. To monitor functional 5: 
properties of neurons after treatment 
with I W - ~  (IOO u/ml) and 1 p . ~  TTX, ' -50 

membrane potentials (V) and ion cur- 
rents (I) were recorded in the presence TTX removed 
of TTX and after subsequent 
of TTX. (A) No spontaneous a c t i i  
was OM in the presence of TTX ' 
(upper trace), whereas almost com- - 
plete recovery was attained after TTX 1 s 
was washed out (lower trace). (B) SU- c 
prathreshold depolarizing currents 
(lower trace) failed to elicit action po- 
tenti i  in the presence, but not in the 
absence, of TTX (upper trace). (C) So- ' 
dium currents (downward deflections) - -2000 

were not observed in the presence of 
TTX but recovered after TTX removal, LI 

indicating that the lack of spontane- 25 m v(mv) 

ous and induced action potentials was due to blockade of sodium channels. 

MHC class I MAP2 Fig. 3. Confocal laser microscopy of 
mixed hippocampal cell cultures treated 
with IFN-y and TTX. Three sections of a 
single neuron are shown, after MHC class I 
surface staining (left) and subsequent in- 
tracellular staining of MAP2 (right). (A to C) 
MHC class I molecules are visible on the 
cell surface of the neuron and (C) on an 
astrocyte that forms part of the flat mono- 
layer beneath the neuron (1 7). 
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active and one of the silent neurons ex- 
pressed both transcrlpts simultaneously (Fig. 
1 A  and Table 1 ) .  Hence, in the absence of 
spi~ntaneous activity suppression of M H C  
class I gene control seems to be more re- 
laxed, w ~ t h  class I heavy chain mRNA ap- 
pearing Inore often than P2-m~croglobul i~~.  

The  M H C  class I expression p,ltterns were 
even more distinct after treatment of neurons 
with interferon y (IFN-y), a protnflammatory 
cytokine known to i~lduce M H C  class I and 
Pz-microglobulin genes in most cell lineages. 
Treatment with IFN-y (100 U/ml) for 72 
hours did not affect the electrical activ~ty of 
neurons, and among such treated cells only a 
minority contained mRNA for both chains, 
M H C  class I and Pz-microglobulin (Fig. 1) .  
None of the IFN-y-treated neurons with 
spontaneous fast action potentials expressed 
Pz-microglobulin mRNA, and only 3 out of 
the 9 "active" neurons expressed M H C  class I 
mRNA (Table 1) .  In contrast, 6 of 12 "silent" 
neurons expressed p,-~nicroglobuli~~ ancl 11 of 
12 expressed MHC class I heavy chain 
mRNA. All the neurons that expresseil P2- 
microglobulin and M H C  class I were "silent" 
neurons without spontaneous action potential 
firirg. 

T o  test a possible correlation between 
functio~lal status and M H C  class I or 13,- 

8 L 

microglobultn expression, we blocked the bio- 
electric activ~ty of the neurons with the sodi- 
Lrm channel blocker tetrodotoxin (TTX). 
Whole-cell recordings of neurons treated with 
IFN-y in the presence of TTX confir~ned the 
lack of spontaneous acttvity because of block- 
ade of soilium currents (Fig. 2). TTX was 
removed immediately before patch-clamp 
analysts to factlitate electrophysiological idell- 
tification of neuro~ls. After removal of TTX, 
both spontaneous and evoked actton poten- 
ttals were observed. Although TTX treatment 
alone did not affect M H C  class I expresston, 
all neurons treated with TTX plus IFN-y con- 
tained both PL-microglobulin and M H C  class 
I mRNA (Fig. 1 and Table 1). These obser- 
vations confirmed that bioelectricallv silent 
neurons are much Inore inducible for ARNA 
of M H C  class I and P,-microglobuli~~ by 
IFN-y than are neurons rvith spontaneous 
electrical activity. 

Membrane expression of M H C  class I pro- 
teins on living neurons was studied by immu- 
nofluorescence labeling wtth the monoclonal 
antibody OX-18, which binds rat class I 
(RT1.A) gene products and with a monoclo- 
nal antibody specific for the neuronal cy- 
toskeleton orotein MAP2. Confocal laser mi- 
croscopy showed that some, but not all, of the 
hippocampal neurons treated with IFN-y car- 
ried M H C  class I molecules on their surface 
(Fig. 3). A total of 27 out of 78 neurons 
(35%) analyzed by confocal ~nicroscopy in 
four experiments were induceil by IFN-y to 
express M H C  class I in the plasma membra~le. 
This percentage of M H C  class I-positive neu- 

rons is consistent with the fraction of silent 
neurons that contain transcrlpts for both pz- 
~nicroglobul~n and M H C  class I heavy chaln. 
In the presence of TTX, virtually all neurons 
responded to IFN-y induct~on. In 67 of the 72 
neurons (93%) analyzed in four different sets, 
confocal tntcroscopy identified M H C  class I 
molecules on the outer cell membrane. TTX 
treatment significantly (P < 0.01; XL test) 
increased the number of M H C  class I-positt\7e 
neurons. 

Our study shows that neurons are capable 
of transcribing both M H C  class I heavy chain 
and P2-microglobulin genes; consecluently, 
neurons can express M H C  class I molecules 
on their surfaces. They therefore possess the 
basic requirements to interact with CDBf 
cytotoxic T cells. M H C  class I expression, 
however. seems to be reeulated bv strict con- 
trol mechanisms. It appears that positive sig- 
nals, as given by IFN-y, are required for m e n -  
brane expresston of M H C  class I molecules, 
whereas negative signals, provided in the pres- 
ence of bioelectric activity, seem to suppress 
M H C  class I exoression. There are various 
examples of neuro~lal gene expression being 
controlled by electrical membrane activitv. 
For example, expression of cell adhesion mol- 
ecules, or neurotrophic factors, has been pos- 
it~velv correlated with neuronal membrane 
activity (9).  In contrast to these cases, regu- 
lation of M H C  class I gene expression seems 
to he under negative control. 

T h e  practical impl~cation of our fincii~lgs 
relates to i ~ n ~ n u n e  surveillance and mtcro- 
btal t~lfection of the CNS.  Suppressed in- 
ducih~lity of M H C  class I molecules III func- 
tionally acttve, fullv intact neurons could 
contain neuronal damage by specific cyto- 
lvtic T cells to levels corn~at ible  with those 
found under adequate bratn f ~ ~ n c t t o n .  In  
contrast, neurons w ~ t h  overt viral damage, 
with loss of bioelectric activity, would be 
susceptible to recognition by cytotoxic 
C D 8 +  T cells. In  these cases. T cell lvsis 
rvould remove ciefu~lct cells that were serv- 
tng solely as viral reservoirs. 
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orochrome (dichlorotriaz'nyl) aminofluorescein-conju-
gated goat antibodies to mouse immunoglobulin (Di­
anova; 10 n,g/ml). Twenty optical sections along thez 
axis were recorded by confocal laser scanning mi­
croscopy (Zeiss 410 ar d Leica). Baseline labeling lev­
els were determined by parallel staining with irrelevant 
monoclonal antibodies (10 ^g/ml) followed by fluoro­
chrome Cy3-conjugated goat antibodies to mouse 
immunoglobulin. 

12. We thank Ch. Czoppelt for technical assistance on 
the confocal laser microscopy, E. Hansert for statis­
tical advice, M. Schwab for critically reading the 
manuscript, and G. Garotta (Hoffmann-La Roche) 
for rat IFN-7 and IFN-7-specific antibodies. H.N. was 
holder of a scholarship from the Deutsche For-
schungsgemeinschaft. 

24 February 1995; accepted 26 April 1995 

Monitoring Release of Neurotrophic Activity 
in the Brains of Awake Rats 

Christian Humpel, Eva Lindqvist, Stine Soderstrom, 
Annika Kylberg, Ted Ebendal, Lars Olson* 

Intracerebral microdialysis of awake rats was used to monitor the possible release of 
neurotrophic factors from brain cells in response to injury and excitation. Perfusates were 
tested with ganglia bioassays and enzyme immunoassay. Trophic activity was released 
after implantation of the microdialysis probe into the hippocampus but not into the 
striatum, as assessed by increased nerve fiber outgrowth from Remak's ganglion. Kainic 
acid treatment significantly increased the release of trophic activity from hippocampal 
sites. These findings suggest that the brain responds to mechanical injury as well as to 
certain excitatory stimuli by regional extracellular release of neurotrophic activity that is 
not identical to the actions of known neurotrophic factors. 

i t has been suggested that neurons in the 
brain may respond to different forms of 
stress by increased synthesis and release of 
neurotrophic or neuroprotective factors. 
However, there is no evidence that such 
stress-induced release to the extracellular 
compartment of the brain occurs in vivo. 
Although the presence of mRNA coding 
for three of the four known mammalian 
neurotrophins (I) [nerve growth factor 
(NGF), brain-derived neurotrophic factor 
(BDNF), and neurotrophin-3 (NT-3)] has 
been demonstrated in neurons at the 
mRNA level by in situ hybridization (2), 
only two of the corresponding proteins, 
NGF and BDNF, have actually been dem­
onstrated in vivo in the brain (I) . In order 
to obtain information about the regional 
presence of neurotrophins in the brain, one 
possibility is to develop specific antibodies 
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for immunohistochemical localization, a 
technique that has allowed cellular localiza­
tion of BDNF protein in the brain (3). A 
second possibility is to use bioassays, taking 

advantage of the unique patterns of fiber 
growth responses seen, for instance, with 
different members of the neurotrophin fam­
ily and with several different ganglia (4). 

In the present study, we tested a new 
microdialysis probe with a membrane capa­
ble of dialyzing proteins the size of neurotro­
phins. We used this probe in vivo to moni­
tor neurotrophic bioactivity in the hip­
pocampus and striatum of rats and tested the 
effects of two different epileptogenic treat­
ments. Released bioactivity was analyzed by 
addition of the perfusates to different ganglia 
and by enzyme immunoassay (EIA). 

The dialysis probe was tested by in vitro 
dialysis of NGF solutions (5). NT-3 protein 
was measured with an EI A (6) that used a 
recently characterized antibody (7). The 
bioassay was done as described (8), using 
chick embryo spinal, sympathetic, ciliary, 
and nodose ganglia, as well as the unique 
Remak's autonomic ganglion from the dor­
sal mesorectum (4). 

Fig. 1 . Nerve fiber out­
growth from Remak's gan­
glion (A and B) and sympa­
thetic ganglion (C and D) 
tested with hippocampal 
perfusates. After implanta­
tion of the microdialysis 
probe into the dorsal hip­
pocampus (A and C), perfu­
sates significantly stimulated 
nerve fiber outgrowth from 
Remak's ganglion (A) but 
not from the sympathetic 
ganglion (C). Kainic acid-in­
duced seizures (B and D) 
markedly enhanced nerve fi­
ber outgrowth from Re­
mak's ganglion (B) but not 
from the sympathetic gangli­
on (D). Scale bar, 150 mm. 
(A) and (B) are examples of 
ganglia scored as positive; 

(C) and (D) are examples of ganglia scored as negative. There is a certain migration of cells from the 
explanted ganglia in (C) and (D), but no or almost no neurite extension. 
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