alterations of both systems regulate body
weight (4, 20, 21). A full understanding of
the physiologic effects of the OB protein
awaits further study, particularly identifica-
tion of the OB receptor. Because a principle
action of the OB protein is to make an
animal thinner, we propose that this 16-kD
protein be called leptin, derived from the
Greek root leptés, meaning thin.
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Recombinant Mouse OB Protein: Evidence for a
Peripheral Signal Linking Adiposity and Central
Neural Networks

L. Arthur Campfield,” Frangoise J. Smith, Yves Guisez,
Rene Devos, Paul Burn

The recent positional cloning of the mouse ob gene and its human homolog has provided
the basis to investigate the potential role of the ob gene product in body weight regulation.
A biologically active form of recombinant mouse OB protein was overexpressed and
purified to near homogeneity from a bacterial expression system. Peripheral and central
administration of microgram doses of OB protein reduced food intake and body weight
of ob/ob and diet-induced obese mice but not in db/db obese mice. The behavioral effects
after brain administration suggest that OB protein can act directly on neuronal networks

that control feeding and energy balance.

The complex molecular mechanisms by
which discrete ingestive behavior, contin-
uous energy expenditure, and dynamic en-
ergy storage in adipose tissue are integrat-
ed remain unknown (1). However, several
lines of evidence argue for circulating sig-
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nals proportional to adipose tissue mass,
possibly coming from adipose tissue, that
act on the brain to regulate feeding behav-
ior and energy balance (1-3). Obese ob/ob
mice are a genetic model of profound,
early onset obesity as a recessive trait (4),
but the molecular basis of their obesity has
eluded investigators (2, 3, 5). The recent
cloning of the mouse ob gene and its hu-
man homolog, by means of positional
cloning strategies, has shown that adipose
tissue of ob/ob mice does not produce a



mature ob gene product. The predicted
amino acid sequence appears to have the
features of a secreted protein (6).

We have overexpressed and purified to
near homogeneity milligram quantities of
a biologically active form of recombinant
mouse OB protein from an Escherichia coli
expression system (7). Obese ob/ob mice (8)
were treated with 6 pg of mouse OB pro-
tein per mouse per day or appropriate con-
trol solutions twice a day by intraperitoneal
(IP) injection for two 5-day periods separat-
ed by 2 days without treatment (9). The
cumulative food intake over the two treat-
ment periods was significantly reduced by 48
and 21%, respectively, in the group receiv-
ing OB protein compared with the control
group receiving the vehicle solution (Table
1) (10). When treatment was withdrawn

Table 1. Effect of repeated IP administration of
mouse OB protein on food intake and body
weight in obese and lean mice. The cumulative
food intake and the change in body weight
over the treatment period are given for mice re-
ceiving two identical IP injections each day of
saline, vehicle control, or recombinant OB pro-
tein. Data are mean = SEM. All experimental
groups consisted of two cages of three mice per
cage, and treatment periods were 5 days except
when indicated. The treatment doses for OB
protein are per mouse per day. Sa, saline; Vh,
vehicle control.

Treat- Ini- Cumulative
ment tial food intake ~ Change in
and OB weight  (grams per weight (g)
dose (¢)} three mice)
14-week-old ob/ob mice
Sa 50+1 443+x19 -09 02
Vh 49+2 495+102 -07=*=04
OB 48 1 255+ 12 -33=x07*
6 g
10-week-old ob/ob mice
Vh 44 £2 427 £ 4.4 0.6 £0.4
OB 47 =1 331 21 -24+06"
3pg
13-week-old DIO mice
Sa 371 36.0=33 -1.9+=038
Vh 38+1 43933 -0.6 £0.38
OB 38+1 36511 —-15x06
6 g

15-week-old DIO miceti

Sat§ 37 +1 21.7+56 -1.7+ 0.9
Vh§ 38+1 26774 -1.8 1.1
OB§ 36+1 182+x14 -33x07"

30 ng

15-week-old lean AKR/J micet

Vh 27 1 287 £3.8 -1.4+06
OB 26+ 1 242 +24 -1.3+06

12 pg

8-week-old db/db mice

Sa§ 41 +1 531 -12*+02
Vh 39+1 553*0.8 -06 =02
OB 41 +1 60272 -1.0 £ 0.1

6 g
*Significant difference between OB protein and vehicle
control groups with P < 0.05 by ANOVA (77). tThree
days of treatment. +One mouse per cage. §Three

mice per group.

(days 6 and 7), the food intake of the OB
protein group during these 2 days increased
to amounts similar to, but not exceeding,
that of control groups. No other behavioral
or adverse effects were observed. The weight
loss during the first treatment period in
the OB protein group (percent change =
—6.8 = 1.3%; P < 0.05) was significantly
greater than in the saline (—1.8 = 0.4%)
and vehicle control (—1.4 = 0.7%) groups
(Fig. 1) (11). The rapid weight gain observed
in the OB protein group during the 2 days
without treatment (Fig. 1, days 6 and 7)
indicate that the effects of OB protein treat-
ment are reversible. Stabilization of body
weight at a reduced level when treatment
was resumed indicated that, although the
activity of OB protein was clearly reduced,
its inhibitory effects on body energy bal-
ance of ob/ob mice were sustained during
treatment. After the final treatment, mice
that had been treated with OB protein re-
turned to their pretreatment weight within 5
days.

When similar ob/ob mice received by IP
injection 3 wg of OB protein per mouse

Fig. 1. Repeated IP injection of re- 0
combinant mouse OB protein for
two 5-day periods reduced body
weight in obese ob/ob mice. The
graph shows the change in body

weight from the pretreatment -2
weight for obese ob/ob mice treat-
ed with two daily IP injections (0.1 3

ml each) of saline (open squares),
vehicle control (open circles), or re-
combinant mouse OB protein (two
injections of 3 wg per mouse per
day; closed circles) (70). Values 5
represent the mean = SEM change 0
in body weight in grams for groups

of six mice for the two 5-day peri-

Body weight change (g)

per day for 5 days, food intake and body
weight were significantly reduced, but the
magnitudes of the reductions were less
than those at the higher dose (Table 1).
Together these studies show that the ef-
fects of OB protein on food intake and
body weight were dose-related in ob/ob
mice. Similar IP administration studies
were also performed in diet-induced obese
(DIO) mice (12) and obese db/db mice (db
is the diabetes gene) (9). In DIO mice, OB
protein reduced food intake and body
weight in a dose-related manner (Table
1). However, when normal-weight control
mice were treated with OB protein (12 pg
per mouse per day), only a slight reduction
in food intake was observed (Table 1). In
db/db mice, administration of mouse OB
protein (6 pg per mouse per day) had no
effect on cumulative food intake or body
weight (Table 1).

These experiments demonstrate that re-
combinant mouse OB protein is biologically
active and has the expected dose-related ac-
tivity to reduce the degree of obesity of obfob
and DIO mice. However, in obese db/db

4 -o-Saline
—o—Vehicle
—=—OB protein

2 3 4 5 6 7 8 9 10 M 12

ods of treatment (solid lines) separated by 2 days without treatment (dashed lines). Pretreatment body
weights and food intake during the first treatment period are given in Table 1. Body weight of the OB
protein group is significantly different from the vehicle control group with P < 0.05 by two-way ANOVA
with repeated measures (77) [effect of treatment, F(2,215) = 74.2 (P < 0.0001); effect of time, F(11,215)

= 0.97 (not significant)].

Table 2. Effect of a single ICV administration of mouse OB protein on food intake and body weight gain
inlean (+/7?) and db/db mice. Cumulative 7-hour and 24-hour food intake and body weight gain in the 24
hours after overnight fasting and ICV injection of 1 ug of OB protein per mouse are given. Data are mean
+ SEM. Body weight was measured before the ICV injection and 24 hours later. Mice were 6 to 7 weeks

old.
Initial Cumulative food intake (g) ) .
Treatment weight \/\/elg(gt) gain
(@) 7 hours 24 hours
Lean (+/7?) mice
Artificial CSF (n = 5) 18 =1 1.0 = 0.1 42 *+0.2 2507
Vehicle (n = 6) 18 £1 0.5 £ 0.1 3.6 0.3 1.6 £0.3
OB =29 18 =1 0.3 £0.1* 2.3 04" 0.5 £0.3"
db/db mice
Artificial CSF (n = 9) 29 * 1.6+0.2 6.6 0.4 1.7 £ 0.1
Vehicle (n = 10) 28 £ 1 1.4 =01 6.3 £0.2 1.2+0.2
OB (=12 30 £ 1 1.2x0.1 5705 1.1 0.1
*Significant difference between OB protein and vehicle control groups with P < 0.05 by ANOVA (17).
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mice, OB protein at a dose of 6 g per mouse
per day, which was effective in ob/ob mice,
has no effect on food intake or body weight.

After mice were fasted overnight, single
doses of recombinant OB protein (3 pg per
mouse) or saline or vehicle control were
administered by intravenous (IV) injection
through chronically implanted jugular vein
cannulas (13). In contrast to mice receiving
saline or vehicle control, the food intake of
the ob/ob mice injected with OB protein was
significantly reduced and remained sup-
pressed by 45% compared with mice treated
with the vehicle control (Fig. 2A). No other
behavioral or adverse effects were observed.
However, body weight gain 24 hours after
injection was not different. Similar results
were obtained in lean littermate control
mice (+/7) (8), but the magnitude of the
reduction in food intake was attenuated and
body weight gain was slightly, but signifi-
cantly, reduced compared with the vehicle
control group (Fig. 2B). Subgroups of mice
in which the cannulas remained unblocked
received injections of both recombinant OB
protein and vehicle control in separate trials.
The percent reduction of food intake after
injection was greater in obese than in lean
mice [46 = 15% (n = 5) and 14 = 8% (n =
6), respectively].

Single doses of recombinant mouse OB
protein (1 pg per mouse) or appropriate con-
trol solutions were injected into the lateral
ventricle in mice through chronically im-

>
N

IV injection
ob/ob mice

Saline

=
o

Vehicle

OB
protein

Food intake (g)

0o 1 2 383 4 5 6 7
Time (hours)

Fig. 2. A single IV injection of mouse OB protein
reduced food intake in obese ob/ob (A) and lean (+/7?)
(B) mice. The graphs in (A) and (B) show cumulative
food intake during 7 hours after IV injection (0.1 ml) of
saline (open squares; n = 4), vehicle control (open
circles; n = 7), or mouse OB protein (filled circles; 3
g per mouse; n = 8 for ob/ob mice; n = 11 for +/?
mice). (C) A single ICV injection of mouse OB protein
reduced food intake in obese ob/ob mice. The graph
shows the cumulative food intake during 7 hours after
ICV injection (1 wl) of artificial CSF (open squares; n =
15), vehicle control (open circles; n = 7), or mouse OB
protein (filed circles; 1 wg per mouse; n = 16). In a
subgroup of eight trials, food intake during the 24
hours after the injection period was 1.1 = 0.3 g after
ICV injection of 1 wg per mouse of OB protein (n = 4)

planted intracerebroventricular (ICV) can-
nulas (14). During the first 30 min after ICV
injection, most ob/ob mice ate after only a
short delay. In contrast to mice receiving ar-
tificial cerebrospinal fluid (CSF) or vehicle
control, the ob/ob mice injected with OB pro-
tein stopped eating after the first 30 min and
most mice did not eat again during the re-
maining 6.5 hours of the experiment (Fig.
2C). In contrast to mice receiving CSF or
vehicle control, mice treated with mouse OB
protein did not regain any of the weight they
had lost during the pre-injection overnight
fast (body weight gain 24 hours after injec-
tion: CSF, 1.7 + 0.4 g; vehicle control, 2.4 =
0.3 g; and OB protein, —0.8 = 03 g P <
0.0001) (15). In studies in lean (+/?) mice,
ICV injection of mouse OB protein also
caused a reduction in food intake and atten-
uated the regain of body weight (Table 2). In
contrast, ICV injection of OB protein did not
reduce food intake or body weight gain in
obese db/db mice (Table 2).

The demonstration that recombinant
mouse OB protein can reduce food intake
and body weight in ob/ob and DIO obese and
lean mice provides further evidence for the
hypothesis that a circulating protein-based
signal, generated in adipose tissue, acts on
central neuronal networks and plays an im-
portant role in the regulation of feeding be-
havior and energy balance (2, 5). The dura-
tion of action of OB protein is longer than
with many neuropeptides that modulate

B Vehicle
21y injection -~} Saline
+/? mice ,,:ﬁ”
A1 ::’/ *
% 5 g// /"I OB
X 25 - protein
5] T
€1 i
b I
8 v T
L 05 E/
;/
,I
00—

0 1 2 3 4 5 6 7
Time (hours)

Ci1.2
ICV injection CSF
ob/ob mice p
1.0 y T
Sos8 T Vehicle
[v]
£06
o —
o P *
Loar f 71 oB
1 protein
0.2
0

o 1 2 3 4 5 6 7
Time (hours)

compared with 6.4 + 0.2 g after no injection (n = 4). The asterisk indicates significant differences from the
vehicle control group with P < 0.05 by two-way ANOVA without repeated measures (77). [For (A), effect
of treatment, F(2,14) = 10.67 (P < 0.0015); effect of time, F(7,14) = 15.95 (P < 0.0001). For (B), effect
of treatment, F(2,14) = 15.65 (P < 0.003); effect of time, F(7,14) = 55.1 (P < 0.0002). For (C), effect of
treatment, F(2,14) = 8.08 (P < 0.0046); effect of time, F(7,14) = 9.65 (P < 0.002).]
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feeding and is reminiscent of that of central-
ly administered insulin (16).

The failure to observe a reduction in
food intake and body weight after adminis-
tration of mouse OB protein to obese db/db
mice either peripherally or centrally, at dos-
es that were effective in ob/ob mice, is con-
sistent with the hypothesis that the genetic
defect in db/db mice renders them unable to
appropriately respond to OB protein, per-
haps because of a defect in the OB protein
receptor or the postreceptor signalling path-
way (2, 5, 6).

The demonstration that mouse OB pro-
tein can alter feeding behavior and energy
balance when placed directly in the lateral
ventricle of the brain of obese ob/ob and lean
(+/7) mice suggests that one or more brain
areas are among the target sites for mouse
OB protein. The identification of these brain
areas will facilitate studies aimed at elucidat-
ing the neuronal pathways and networks and
the underlying molecular mechanisms by
which OB protein can influence feeding be-
havior and energy balance.
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solution followed by 1 ul of CSF to clear the cannula.
Mice were then immediately replaced in the test cage
with a preweighed petri dish containing a pellet of
mouse chow. Trials were separated by at least 3 days.
Successful cannula placement was verified by in-
creased food intake after an ICV injection of 5to 10 ug
of neuropeptide Y [J. E. Morley, E. N. Hemandez, J. F.
Flood, Am. J. Physiol. 263, R516 (1987)]. Two sepa-
rate preparations of mouse OB protein were used and
the results were combined.

. The corresponding percent changes in body weight

were 4 + 1%, 7 = 1%, and —2 * 1% in the CSF,
vehicle control, and OB protein groups, respectively.
Pre-injection body weights after the 16- to 18-hour
fastwere 40.0 + 1.4g,35.8 +2.1g,and40.3 = 1.5
ginthe CSF, vehicle control, and OB protein groups,
respectively. All values represent the mean + SEM of
groups of obese mice. The effect of OB protein treat-
ment on body weight gain was significant (P <
0.0001) by one-way ANOVA without repeated mea-
sures. Effect of treatment, F(2,26) = 30.67 (17).

M. W. Schwartz et al., Endocr. Rev. 1992 13, 387
(1992); M. W. Schwartz et al., Endocr. Rev. 1994 2,
109 (1994).

17. Statistical differences in the means were tested with
the Student’s t test for unpaired or paired samples
and one- and two-way ANOVA with repeated or
nonrepeated measures as appropriate with P < 0.05
[G. W. Snedecor and W. G. Cochran, Statistical
Methods (lowa State University Press, Ames, IA, ed.
8, 1989)).
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Induction of MHC Class | Genes in Neurons

Harald Neumann, Adolfo Cavalié, Dieter E. Jenne,
Hartmut Wekerle*

Whether neurons express major histocompatibility complex (MHC) class | genes has not
been firmly established. The techniques of confocal laser microscopy, patch clamp
electrophysiology, and reverse transcriptase—polymerase chain reaction were combined
here to directly examine the inducibility of MHC class | genes in individual cultured rat
hippocampal neurons. Transcription of MHC class | genes was very rare in neurons with
spontaneous action potentials. In electrically silent neurons, transcription was noted, with
expression of B,-microglobulin under tighter control than in class | heavy chain molecules.
Surface expression of class | molecules occurred only in electrically silent neurons treated
with interferon -y. Immunosurveillance by cytotoxic T cells may be focused on functionally
impaired neurons.

MHC class 1 heavy chain molecules are
45-kD integral membrane glycoproteins
that assume their correct conformation af-
ter noncovalently binding B,-microglobu-
lin. This complex binds antigenic peptides
for presentation to CD8" T cells (1). MHC
class I molecules are expressed in most tis-
sues, an exception being the healthy central
nervous system (CNS). But the inability of
CNS cells to express MHC class I products
is by no means absolute. Glial components
of the CNS can be readily induced to pro-
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duce MHC determinants in vitro, or, under
pathological conditions, in vivo. In con-
trast, MHC inducibility in normal neurons
has not yet been demonstrated beyond
doubt (2). The intricate association be-
tween CNS glia and neurons had made it
impossible to resolve the issue by conven-
tional morphology or molecular technology.
Whether neurons are able to synthesize
MHC class 1 products, and thus present
antigen to T cells, is of clinical importance.
In viral infections of the CNS, for example,
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Fig. 1. RT-PCR analyses of MHC class | heavy chain, B,-microglobulin, and GAPDH transcripts of (A)
untreated, (B) IFN-y-treated, and (C) IFN-y— plus T TX-treated neurons. Only after treatment with IFN-y
plus TTX did all neurons express mRNA of B,-microglobulin and MHC class | (7, 70). DNA molecular
weight markers and PCR control reactions without the cDNA sample are shown in lanes M and N,
respectively.
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