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Minimal Path Algorithms

O. Steinbock, A. Téth, and K. Showalter
(1) suggest that the computational simula-
tion of chemical waves gives rise to “a highly
efficient algorithm for the determination of
optimal paths.” They state that “conven-
tional path-finding methods typically rely
on iterative searches, in which all possible
pathways between a point of interest and a
target point are successively determined.”

Efficient algorithms for finding minimal
paths between pairs of vertices of a graph are
well known, and do not rely on searching all
possible paths. The method presented,
though different in its approach, appears to
be essentailly equivalent to these algorithms.

The Breadth First Search (BFS) algo-
rithm (2, 3) is applicable where the distanc-
es between adjacent vertices are all equal.
The finish point F is labeled “0.” All ver-
tices adjacent to the “0” are labeled “1”; all
unlabeled vertices adjacent to a “1” are
labeled “2”; and so on until the whole graph
is labeled. The minimal path (or paths)
from any point to F may then be traced by
moving through successively lower num-
bered vertices. A generalization of BFS to
graphs with positive distances is Dijkstra’s
Algorithm (2, 3).

Both algorithms may be interpreted as
calculating the successive positions of a
wave front propagating from point F. Dijk-
stra’s Algorithm selects the vertices of the
graph in the order in which they would be
reached by a wave propagating at constant
speed from F. As each vertex is included it
is labeled with its minimal distance from F
(equivalently, the time at which the wave
reached it). The possibility of interpreting
these algorithms in terms of a propagating
wave strongly suggests that no advantage is
to be gained by explicitly solving a wave
equation. This conclusion is supported by
an analysis of the time behavior of the
algorithms. BFS runs in O(n) time, where n
is the number of vertices in the graph. For a
general graph Dijkstra’s Algorithm is O(n?)
(2, 3). However for large sparse graphs (to
represent two-dimensional mazes) an effi-
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cient implementation should run in O(n
log(n)) time (3).

Each time step of the wave propagation
algorithm will take machine time propor-
tional to the number of grid points used,
while the number of time steps required will
be proportional to the length of the minimal
path. For a general graph, the number of grid
points would need to be O(n?), giving no
better than O(n?) time behavior. Moreover,
such a graph is not representable on a two-
dimensional grid. For (sparse) graphs repre-
senting two-dimensional mazes, the number
of grid points will be O(n), and the minimal
path length will grow at least as fast as
O(Vn), giving O(n*?) behavior.

Hence the proposed wave propagation
algorithm does not improve on the estab-
lished algorithms for finding minimal
paths computationally.
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Response: We thank D. G. Williams for
pointing out -that path-finding methods
based on computing wave position as de-
scribed in our report (1) are “essentially
equivalent” to existing techniques such as
the BFS algorithm. We wish to emphasize
that path finding from reaction-diffusion
waves, which was suggested by Babloyantz
and his co-workers in 1991 (2), represents a
mechanism by which physical and biologi-
cal systems might optimize transit times and

SCIENCE ¢ VOL. 269 21 JULY 1995

G AT R e B

G S

distances. Our study focused on determining
optimal paths from chemical waves in the
Belousov-Zhabotinsky reaction; however,
other systems illustrate how the same pro-
cess might play an important role in biolog-
ical self-organization.

An example of path finding from reac-
tion-diffusion waves is found in the slime
mold Dictyostelium discoideum. The aggrega-
tion of individual Dictyostelium amoebas is
organized by propagating reaction-diffusion
waves of extracellular cyclic adenosine
monophosphate (cAMP) (3). Of particular
interest is the chemotactic cell motion that
parallels the spatiotemporal dynamics of
this chemoattractant. Experiments have
shown that the velocity vectors of cell
movement and wave propagation are always
antiparallel (4). The pacemakers of the
cAMP waves therefore coincide with the
centers of cell aggregation. This relation-
ship implies that the amoebas migrate ac-
cording to optimal paths defined by the
reaction-diffusion waves during the aggre-
gation phase of the Dictyostelium life cycle.
Because slime mold aggregation under nat-
ural conditions takes place in the three-
dimensional “labyrinth” of forest soil, it
seems likely that path-length optimization
based on reaction-diffusion waves is rele-
vant in the self-organization of this species.
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