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Permeation Selectivity by Competition in a 
Delayed Rectifier Potassium Channel 

Stephen J. Korn and Stephen R. Ikeda 

Permeation selectivity was studied in two human potassium channels, Kv2.1 and Kv1.5, 
expressed in a mouse cell line. With normal concentrations of potassium and sodium, both 
channels were highly selective for potassium. On removal of potassium, Kv2.1 displayed 
a large sodium conductance that was inhibited by low concentrations of potassium. The 
channel showed a competition mechanism of selectivity similar to that of calcium chan­
nels. In contrast, Kv1.5 displayed a negligible sodium conductance on removal of po­
tassium. The observation that structurally similar potassium channels show different 
abilities to conduct sodium provides a basis for understanding the structural determinants 
of potassium channel selectivity. 

D elayed rectifier K+ channels are exposed 
to large electrochemical gradients of both 
Na+ and K+. Rapid repolarization of the 
action potential therefore requires that 
these channels be highly selective for K+ 

over Na+ . K+ channels contain multiple 
ion binding sites within the pore that can 
be occupied simultaneously by more than 
one ion (I, 2). The observation that K+ 

currents are partially blocked by Na + sug­
gests that Na+ can bind within the channel 
pore (3, 4). However, K+ channels have 
almost universally been shown to be imper­
meable to Na+ (3-5). The mechanism that 
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prevents the small Na + ion from conduct­
ing, while permitting several larger ions (for 
example, K+, Rb+ , NH 4

+ , and Cs+) to 
conduct, has not been elucidated. 

L-Type Ca2 + channels represent anoth­
er class of multi-ion channels that displays 
extremely high ion specificity. However, 
removal of Ca2 + permits Na + to permeate, 
which has led to a model in which compe­
tition between Ca2 + and Na + for intrapore 
binding sites determines which ion occupies 
the channel and conducts (6). 

Recently, neuronal K+ channels from 
rat superior cervical ganglia and chick dor­
sal root ganglia were shown to conduct Na + 

on removal of K+ (7). The selectivity 
mechanism of these channels appeared sim­
ilar to that of Ca2 + channels. We now show 
that two structurally similar K+ channels 
allow Na + to permeate in the absence of 

K+. However, whereas Na+ conductance 
through one channel (Kv2.1) was substan­
tial, Na + conductance through the other 
(Kvl.5) was negligible. 

Mouse L cells were injected with com­
plementary RNA that encoded one of two 
human K+ channels, Kv2.1 or Kvl.5 (8). 
One day after injection, membrane currents 
carried by K+ or Na+ through these chan­
nels were examined by the whole-cell patch 
clamp technique (9). In solutions that con­
tained high external Na + and high internal 
K+ concentrations (10), both channels dis­
played typical depolarization-evoked de­
layed rectifier K+ currents (Figs. 1A and 
2A). With K+ and Na + equilibrium poten­
tials set to —87 and > + 125 mV, respec­
tively, currents through Kv2.1 reversed at 
- 8 0 mV (Fig. IB), indicating that they 
were carried almost exclusively by K+. 

In cells containing Kv2.1 channels, 
elimination of both intracellular and extra­
cellular K+ resulted in large inward currents 
during both depolarization and repolariza­
tion steps (Fig. 1C). With N-methylglu-
camine (NMG+) in the pipette solution, no 
outward current occurred with depolariza­
tions as high as +80 mV (Fig. ID). With 
symmetrical intracellular and extracellular 
Na + concentrations and asymmetrical Cl~ 
concentrations (and no K+), currents 
through Kv2.1 reversed at the calculated 
Na + equilibrium potential. 

Kvl.5 channels carried a measurable 
but negligible Na + current after removal 
of intracellular and extracellular K+ (Fig. 
2B). Channels that carried little Na + cur­
rent did, however, carry large inward cur­
rents when extracellular Na + was replaced 
by K+ (Fig. 2B). At equimolar ion con­
centrations, inward conductance of Na + 

was 0.79 ± 0.20% (mean ± SEM; n = 4) 
of that of K+ at - 2 0 mV (potential of 
peak conductance). 

In mixtures of two permeant ions, multi-
occupancy channels are predicted to display 
anomalous mole fraction behavior (2, 6). In 
this situation, addition of low concentrations 
of the ion with higher affinity for an intrapore 
binding site should inhibit current through 
the channel. As the concentration of the 
high-affinity ion is increased, conductance 
will increase as a result of electrostatic repul­
sion between multiple ipns, in the pore. Kv2.1 
displayed anomalous mole fraction behavior 
in mixtures of Na+ ancJsKjt (Fig. 3). In cells 
with 140 mM Na+ outside and 140 mM 
NMG+ inside, addition of low concentrations 
of extracellular K+ resulted in a concentra­
tion-dependent decrease in inward Na+ cur­
rent (Fig. 3, A and C). The minimum current, 
measured at +20 mV, occurred at ~3 mM K+ 

(11). Further increases in the extracellular K+ 

concentration resulted in an increase in cur­
rent magnitude. At a concentration of 140 
mM of exclusively one ion, inward conduc-
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tance of Na+ was 7.87 i 0.22% (n = 3)  of 
that of K+ at +20 mV (Fig. 3B). 

The data are co~lsistent with a model of 
selectivity for Kv2.1 that is similar to that 
proposed for L-type Ca2+ channels. This 
model, in which ions compete for occupancy 
of the co~lductio~l pathway, predicts that as 
the higher affinity ion is added in relatively 
low concentrations, ~nacroscopic currents 
through the channels should reflect perme- 
ation of both ions. An alternative possibility 
is that low7 concentrations of the high-affinity 
ion would co~npletely block conduction of the 
lower affinity ion without itself conducti~lg. 
For example, at low concentrations, the high- 
affinity ion nlay occupy the pore and exclude 
the low-affinity ion but may lack the energy 
required to traverse the channel. It has been 
impossible to test these alternatives with 
Ca2+ channels because the ~nicrolnolar con- 
centrations of CaLT required to block Na' 
conductance completely are roo low to gen- 
erate a measurable Ca2+ current. These two 
possibilities can, however, be distinguished for 
pernleation of K+ and Nat through Kv2.1, 
because milli~nolar concentrations of K+ are 
required to inhibit Na+ conductance. 

If permeation of K+ and of Na+ t h r o ~ ~ g h  
Kv2.1 are mutually exclusive, mixtures of 
the two ions should produce currents that 
reverse through one or the other equilibrium 
potential. At  some co~lcentratio~l between 3 
and 10 mM, the reversal potential should 
switch from the Na+ equilibrium potential 
to the K+ eq~lilibriurn potential. In contrast, 
if both K+ and Na+ can permeate Kv2.1 at 
low concentratio~ls of Kt, mixtures of K+ 
and Na+ should result in a11 intermediate 
reversal potential, gove~lled by the pernle- 
ability ratio, P,,/P,,, of the two Ions. 

With equimolar Na' inside and out, ex- 
tracellular addition of 3 or 10 Ink1 Kt  shifted 
the relrersal potential by 7.3 ? 0.4 mV (mean 
+ SEM; 11 = 4) and 30.7 i 1.9 mV (n = 4),  
respectively (Fig. 4).  Both step currents and 
tail currents shifted similarly. The PK/PNa ra- 
tio was higher at 10 nlM K' than at 3 mhl K L  
(32.7 i 3.7 versus 15.5 -t 1.1), which is 
consistent with the competition lnechanisln 
in a multioccupancy channel ( 2 ,  12). 

The rnechallisln of selectivity fur Kt 
over Nai is ~~ualitatively well descrihed hy a 
model in a,hich K' and Na' compete for 
occupancy of the pore, with KL having a 
higher affinity than Nat  for at least one 
intrapore binding site. Despite the higher 
affinity of K' for the channel, Kt perme- 
ation produced a larger current, which is 
consistent with a model in which electro- 
static repulsion contributes to the Kt con- 
ductance (2, 6 ,  13). 

The only channel previously demon- 
strated to select among physiologically rel- 
evant ions by a cornpetition ~nechallism is 
the L-type, voltage-gated Cap channel (6 ) .  
Our data denlonstrate that a similar mech- 

anism operates in a delayed rectifier K+ 
channel cloned from human brain cortex 
(Kv2.1). It is likely that this mechanism 
also operates in at least two other delayed 
rectifier K+ channels in cells from two oth- 
er animal species, rat superior cervical gar-  
glion neurons and chick dorsal root gangli- 
on  neurons (7). The  fact that this compe- 
tition mechanism occurs outside of the 
Ca2+ channel donlain suggests that it does 
not require special properties associated 

with Ca" binding sites (6).  
Kvl.5 also allowed a small but measurable 

Na+ permeation in the absence of K+ (14). 
Although it is possible that the mechanisms 
by which Kv2.1 and Kvl.5 select for Kt over 
Nat differ, the structural similarity of the 
two channels suggests that the difference in 
their abilities to conduct Na+ is quantitative 
in nature. The sinlplest possibility is that a 
specific combination of amino acid residues 
within the pore forms binding sites with 

Step potential (mV) , , 
-80 -40 

Fig. 1. Effect of K '  removal on N a  permeaton through Kv2.1. (A) K currents were evoked by 200-ms 
depolarizatons to voltages between -40 and +80 mV. Repolarization was to -40 mV to reveal the 
outward tall current. Solutons for this and other flgures are as descrbed (70). 1B) K+ currents were 
evoked by a depolarizaton to +60 mV. Repoarzation to different potentas revealed the current reversal 
potential of -80 mV. (C) Currents recorded in the absence of K +  were evoked by 100-ms depolarizations 
to voltages between -40 and 1-80 mV. (D) Current-voltage curves showing the Na- current magntude 
during the depoarizlng step (C) and repolarlzation (0) (measured 5 ms after repoarizatlon) as a functlon 
of step potential. Measurements were taken from the cell in (C). 

Fig. 2. Effect of KT removal on Na- conductance in Kv1.5. (A) K T  currents as descrbed for Fig. 1A. (B) 
Currents evoked by depolarizations to -20 mV, measured in a sngle cell that contained Kv1 .5, in the 
presence of 140 mM Na+ (and 0 mM K-) and in the presence of 140 mM K- (and 0 mM Na-). Tail current 
In 140 mM K +  is cut off. Solutons were as described (lo), with the exception of the equimolar substituton 
of external Na+ (140 mM Na-) by KT (1 40 mM KT).  

SCIENCE VOL. 269 21 JULY 1995 41 1 



I External K+ (mM) 

Fig. 3. Anomalous mole fraction behavior between K- and NaT in Kv2.1, Inward currents were evoked by 
100-ms depolarizations to +20 mV. Repolarization was to -80 mV. (A) Currents in the presence of various 
extracellular KT concentrations. For currents at 0 to 3 mM K + ,  the extracellular Na- concentration was 140 
mM. At 10 and 30 mM K', K' was substituted for equimolar concentratons of Na-. (6) Inward currents from 
adifferent cell in 140 mM Na- (0 mM K-) and 140 mM KT (0 mM Na-) external solutions. (C) Inward current 
magntude durng the voltage step to +20 mV as a function of K+  concentration. Currents were normalized 
to that evoked in the presence of 140 mM Na- and 0 mM K+ (dashed line). Values are means i SEM: 
numbers n parentheses represent the number of cells tested. 
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Fig. 4. Reversal potential shifts for Kv2 1 in m~xtures of K +  and Na+, (A) Currents recorded n the 
presence of equimolar (1 40 mM) Internal and external Na+ plus 0 or 3 mM K + .  A depolar~zing voltage step 
to +20 mV was followed by repoarizaton to dfferent potentials that ranged from -20 to +30 mV. (6) Tall 
current-voltage curves (measured 5 ms after repolarization) showng the shft in reversal potential pro- 
duced by addition of 3 mM (top) or 10 mM (bottom) extracellular K+ 
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