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Permeation Selectivity by Competition in a
Delayed Rectifier Potassium Channel

Stephen J. Korn and Stephen R. lkeda

Permeation selectivity was studied in two human potassium channels, Kv2.1 and Kv1.5,
expressed in amouse cell line. With normal concentrations of potassium and sodium, both
channels were highly selective for potassium. On removal of potassium, Kv2.1 displayed
a large sodium conductance that was inhibited by low concentrations of potassium. The
channel showed a competition mechanism of selectivity similar to that of calcium chan-
nels. In contrast, Kv1.5 displayed a negligible sodium conductance on removal of po-
tassium. The observation that structurally similar potassium channels show different
abilities to conduct sodium provides a basis for understanding the structural determinants

of potassium channel selectivity.

Delayed rectifier K* channels are exposed
to large electrochemical gradients of both
Na* and K*. Rapid repolarization of the
action potential therefore requires that
these channels be highly selective for K*
over Na*. K* channels contain multiple
ion binding sites within the pore that can
be occupied simultaneously by more than
one ion (I, 2). The observation that K*
currents are partially blocked by Na™ sug-
gests that Na™ can bind within the channel
pore (3, 4). However, K* channels have

almost universally been shown to be imper-
meable to Na* (3-5). The mechanism that
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prevents the small Na™ ion from conduct-
ing, while permitting several larger ions (for
example, K*, Rb*, NH,*, and Cs*) to
conduct, has not been elucidated.

L-Type Ca’* channels represent anoth-
er class of multi-ion channels that displays
extremely high ion specificity. However,
removal of Ca?* permits Na™ to permeate,
which has led to a model in which compe-
tition between Ca?* and Na™ for intrapore
binding sites determines which ion occupies
the channel and conducts (6).

Recently, neuronal K* channels from
rat superior cervical ganglia and chick dor-
sal root ganglia were shown to conduct Na*
on removal of K* (7). The selectivity
mechanism of these channels appeared sim-
ilar to that of Ca?* channels. We now show
that two structurally similar K* channels
allow Na*' to permeate in the absence of
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K*. However, whereas Na™ conductance
through one channel (Kv2.1) was substan-
tial, Na™ conductance through the other
(Kv1.5) was negligible.

Mouse L cells were injected with com-
plementary RNA that encoded one of two
human K* channels, Kv2.1 or Kv1.5 (8).
One day after injection, membrane currents
carried by K* or Na* through these chan-
nels were examined by the whole-cell patch
clamp technique (9). In solutions that con-
tained high external Na* and high internal
K™ concentrations (10), both channels dis-
played typical depolarization-evoked de-
layed rectifier K* currents (Figs. 1A and
2A). With K* and Na* equilibrium poten-
tials set to —87 and >+125 mV, respec-
tively, currents through Kv2.1 reversed at
—80 mV (Fig. 1B), 'mdicat'g}g that they
were carried almost exclusively by K™.

In cells containing Kv2.1 channels,
elimination of both intracellular and extra-
cellular K* resulted in large inward currents
during both depolarization and repolariza-
tion steps (Fig. 1C). With N-methylglu-
camine (NMG™) in the pipette solution, no
outward current occurred with depolariza-
tions as high as +80 mV (Fig. 1D). With
symmetrical intracellular and extracellular
Na* concentrations and asymmetrical Cl1~
concentrations (and no K%), currents
through Kv2.1 reversed at the calculated
Na™ equilibrium potential.

Kv1.5 channels carried a measurable
but negligible Na* current after removal
of intracellular and extracellular K* (Fig.
2B). Channels that carried little Na™ cur-
rent did, however, carry large inward cur-
rents when extracellular Na™ was replaced
by K* (Fig. 2B). At equimolar ion con-
centrations, inward conductance of Na™
was 0.79 £ 0.20% (mean = SEM; n = 4)
of that of K* at —20 mV (potential of
peak conductance).

In mixtures of two permeant ions, multi-
occupancy channels are predicted to display
anomalous mole fraction behavior (2, 6). In
this situation, addition of low concentrations
of the ion with higher affinity for an intrapore
binding site should inhibit current through
the channel. As the concentration of the
high-affinity ion is increased, conductance
will increase as a result of electrostatic repul-
sion between multiple ipns in the pore. Kv2.1
displayed anomalous mole fraction behavior
in mixtures of Na* and, Kt (Fig. 3). In cells
with 140 mM Na* outside and 140 mM
NMG™ inside, addition of low concentrations
of extracellular K* resulted in a concentra-
tion-dependent decrease in inward Na* cur-
rent (Fig. 3, A and C). The minimum current,
measured at +20 mV, occurred at ~3 mM K*
(11). Further increases in the extracellular K*
concentration resulted in an increase in cur-
rent magnitude. At a concentration of 140
mM of exclusively one ion, inward conduc-
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tance of Na* was 7.87 *+ 0.22% (n = 3) of
that of K* at +20 mV (Fig. 3B).

The data are consistent with a model of
selectivity for Kv2.1 that is similar to that
proposed for L-type Ca?" channels. This
model, in which ions compete for occupancy
of the conduction pathway, predicts that as
the higher affinity ion is added in relatively
low concentrations, macroscopic cutrents
through the channels should reflect perme-
ation of both ions. An alternative possibility
is that low concentrations of the high-affinity
ion would completely block conduction of the
lower affinity ion without itself conducting.
For example, at low concentrations, the high-
affinity ion may occupy the pore and exclude
the low-affinity ion but may lack the energy
required to traverse the channel. It has been
impossible to test these alternatives with
Ca?* channels because the micromolar con-
centrations of Ca’* required to block Na*
conductance completely are too low to gen-
erate a measurable Ca?™ current. These two
possibilities can, however, be distinguished for
permeation of K* and Na* through Kv2.1,
because millimolar concentrations of K* are
required to inhibit Na* conductance.

If permeation of K* and of Na™ through
Kv2.1 are mutually exclusive, mixtures of
the two ions should produce currents that
reverse through one or the other equilibrium
potential. At some concentration between 3
and 10 mM, the reversal potential should
switch from the Na™ equilibrium potential
to the K* equilibrium potential. In contrast,
if both K* and Na* can permeate Kv2.1 at
low concentrations of K*, mixtures of K*
and Na* should result in an intermediate
reversal potential, governed by the perme-
ability ratio, P/Py,, of the two ions.

With equimolar Na* inside and out, ex-
tracellular addition of 3 or 10 mM K* shifted
the reversal potential by 7.3 = 0.4 mV (mean
+ SEM;n =4)and 30.7 = 1.9 mV (n = 4),
respectively (Fig. 4). Both step currents and
tail currents shifted similarly. The P/Py,, ra-
tio was higher at 10 mM K™ than at 3 mM K*
(32.7 = 3.7 versus 15.5 *= 1.1), which is
consistent with the competition mechanism
in a multioccupancy channel (2, 12).

The mechanism of selectivity for K*
over Na™ is qualitatively well described by a
model in which K* and Na™* compete for
occupancy of the pore, with K* having a
higher affinity than Na™* for at least one
intrapore binding site. Despite the higher
affinity of K* for the channel, K* perme-
ation produced a larger current, which is
consistent with a model in which electro-
static repulsion contributes to the K* con-
ductance (2, 6, 13).

The only channel previously demon-
strated to select among physiologically rel-
evant ions by a competition mechanism is
the L-type, voltage-gated Ca?* channel (6).
Our data demonstrate that a similar mech-
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anism operates in a delayed rectifier K*
channel cloned from human brain cortex
(Kv2.1). It is likely that this mechanism
also operates in at least two other delayed
rectifier K¥ channels in cells from two oth-
er animal species, rat superior cervical gan-
glion neurons and chick dorsal root gangli-
on neurons (7). The fact that this compe-
tition mechanism occurs outside of the
Ca’* channel domain suggests that it does
not require special properties associated
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with Ca’?" binding sites (6).

Kv1.5 also allowed a small but measurable
Na™ permeation in the absence of K* (14).
Although it is possible that the mechanisms
by which Kv2.1 and Kv1.5 select for K* over
Na* differ, the structural similarity of the
two channels suggests that the difference in
their abilities to conduct Na™ is quantitative
in nature. The simplest possibility is that a
specific combination of amino acid residues
within the pore forms binding sites with
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depolarizations to voltages between —40 and +80 mV. Repolarization was to —40 mV to reveal the
outward tail current. Solutions for this and other figures are as described (70). (B) K* currents were
evoked by a depolarization to +60 mV. Repolarization to different potentials revealed the current reversal
potential of —80 mV. (C) Currents recorded in the absence of K* were evoked by 100-ms depolarizations
to voltages between —40 and +80 mV. (D) Current-voltage curves showing the Na* current magnitude
during the depolarizing step (O) and repolarization (@) (measured 5 ms after repolarization) as a function
of step potential. Measurements were taken from the cell in (C).
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Kv1.5. (A) K* currents as described for Fig. 1A. (B)

Currents evoked by depolarizations to —20 mV, measured in a single cell that contained Kv1.5, in the
presence of 140 mM Na* (and 0 mM K*) and in the presence of 140 mM K* (and O mM Na™). Tail current

in 140 mM K™ is cut off. Solutions were as described
of external Na* (140 mM Na™*) by K* (140 mM K¥).
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(70), with the exception of the equimolar substitution
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Fig. 3. Anomalous mole fraction behavior between K* and Na* in Kv2.1. Inward currents were evoked by
100-ms depolarizations to +20 mV. Repolarization was to —80 mV. (A) Currents in the presence of various
extracellular K* concentrations. For currents at 0 to 3 mM K*, the extracellular Na* concentration was 140
mM. At 10 and 30 mM K™, K* was substituted for equimolar concentrations of Na*. (B) Inward currents from
adifferent cellin 140 mM Na* (0 mM K*) and 140 mM K* (0 mM Na™*) external solutions. (C) Inward current
magnitude during the voltage step to +20 mV as a function of K* concentration. Currents were normalized
to that evoked in the presence of 140 mM Na* and O mM K* (dashed line). Values are means *= SEM,;
numbers in parentheses represent the number of cells tested.
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Fig. 4. Reversal potential shifts for Kv2.1 in mixtures of K* and Na*. (A) Currents recorded in the
presence of equimolar (140 mM) internal and external Na* plus 0 or 3 mM K*. A depolarizing voltage step
to +20 mV was followed by repolarization to different potentials that ranged from ~20to +30 mV. (B) Tail
current-voltage curves (measured 5 ms after repolarization) showing the shift in reversal potential pro-
duced by addition of 3 mM (top) or 10 mM (bottom) extracellular K*.

different affinities for different ions (15).
However, it appears that channel occupancy
by permeant ions markedly alters the three-
dimensional structure of the pore (16). Con-
sequently, the formation of an intrapore
binding site may in part depend on a con-
formational change in the channel, pro-
duced by an ion occupying the permeation

may involve structural determinants outside
the permeation pathway. Molecular studies
of Kv2.1 and Kv1.5 should help to clarify

these issues.
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