
estimate. Uslng the approach described 
here, it should he feasible to screen the 
entire S. typhimu~ium genome for virulence 
genes with the use of a small number of 
mice, and so provide a basis for a more 
comprehensire understanding of S. typhi- 
mu~ium pathogenicity. Signature-tagged 
mutagenesis should flnd general applicahil- 
ity to other animal and plant pathogens 
that can undergo transposon or other forms 
of insertional lnutagenesis ( 1  7) .  
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Integration of MAP Kinase Signal Transduction 
Pathways at the Serum Response Element 
Alan J. Whitmarsh, Paul Shore, Andrew D. Sharrocks, 

Roger J. Davis* 

The ternary complex factor (TCF) subfamily of ETS-domain transcription factors bind with 
serum response factor (SRF) to the serum response element (SRE) and mediate increased 
gene expression. The TCF protein Elk-1 is phosphorylated by the JNK and ERK groups 
of mitogen-activated protein (MAP) kinases causing increased DNA binding, ternary 
complex formation, and transcriptional activation. Activated SRE-dependent gene ex- 
pression is induced by JNK in cells treated with interleukin-1 and by ERK after treatment 
with phorbol ester. The Elk-1 transcription factor therefore integrates MAP kinase sig- 
naling pathways in vivo to coordinate biological responses to different extracellular stimuli. 

T h e  SRE mediates Increased immediate- includes Elk-1, SAP-1, and NET-l/ERP/ 
early gene expression (for example, c-fos) in SAP-2 (4). Phosphorylation qf TCF is as- 
cells treated with growth factors or cyto- sociated with activated, h SRE-dependent 
kines or subjected to environmental stress gene expressloll (5, 6 ) .  The  ERK group of 
(1 ) .  The SRF hinds to the SRE along \n th  MAP kinases phosphorylatk* Elk-l and 
a TCF (2) .  The TCF proteins belong to a cause both increased ternary complex for- 
suborouv of the ETS-domain familv 13) that mation 17. 8) zind activation of the Elk-l - , , .  
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the exposure of cells to environmental 
stress (10). These effects of environmental 
stress [for example, ultraviolet (UV) radia- 
tion and exposure to anisomycin], however, 
are not mediated by the ERK signal trans- 
duction pathway ( 10). Furthermore, colo- 
ny-stimulating factor can induce changes in 
temary complex formation by a mechanism 
that is independent of the ERK signal trans- 
duction pathway (1 1 ). Therefore, at least 

one ERK-independent signal transduction 
pathway causes increased SRE-dependent 
gene expression. Signal transduction path- 
ways that mediate ERK-independent acti- 
vation of NFKB, STAT, and c-Jun tran- 
scription factors have been identified (1 2, 
13). However, mechanisms that can ac- 
count for the ERK-independent activation 
of SRE-dependent gene expression have 
not been defined. 

- u ---- - - h  - d , 3 A F  , 3 & +  , 3 2 +  
-a-s " q"!@"Fra- ---- - - . E - E  0 0  t97 - + - + - + Activated FRK 

Control MBP c-Jun 

JNK 

a 

Mix 

9 
Fig. 1. TCF phosphorylation by JNK and ERK MAP kinases. (A) In-gel protein kinase assays of lysates 
prepared from CHO cells (25) treated without and with IL-1, UV radiation, and TPA were done with MBP, 
c-Jun, SAP-1, and Elk-I as substrates (28). Control experiments were done without substrate. Molecular 
size standards (in kilodaltons) are indicated on the right. (B) The phosphorylation of Elk-1 (upper panel) 
and SAP-I (lower panel) was examined in an immune complex protein kinase assay with epitope-tagged 
MAP kinases, including EGF-stimulated ERK2 and IL-1-stimulated JNKl (28). Control experiments were 
done with immunoprecipitates of mock-transfected cells that do not express epitope-tagged MAP 
kinase. (C) The phosphorylated Elk-1 was examined by phosphoamino acid analysis (28). (D) Elk-I tryptic 
phosphopeptides were examined by two-dimensional mapping (28). A map of Elk-I phosphorylated by 
ERK2 and JNKl is shown. A map of a 1 :I mixture of Elk-I phosphorylated by ERK2 and JNKl is also 
presented. 

Fig. 2. Phosphorylation of Elk-1 by JNK and ERK 
causes increased ternary complex formation, de- 
creased ternary complex electrophoretic mobility, 
and increased DNA-binding activity. Elk-1 was 
phosphorylated with ERK2 and JNKI in vitro (30). 
(A) Ternary complex formation by Elk-1 , SRF, and 
the SRE was measured by EMSA with a double- 
stranded oligonucleotide probe (30). The migra- 
tion of the SRE probe, the secondary SRF-SRE 
complex (27, and the temary complex (3") is indi- 
cated. Conditions of the Elk-I preincubation are 
indicated above each lane. (B) Ternary complex 
formation was also examined with a 134-bp frag- 
ment of the c-fos promoter containing the SRE 
(30). The migration of the SRE probe, 2" complex, 
and the two ternary complexes (3" 1 and 3" 11) are 
indicated. (C) The DNA-binding activity of Elk-1 
was examined by EMSA with the 32P-labeled dou- 
ble-stranded E74 probe that contains an ets-like 
binding site (30). The migration of the E74 probe 
and the E74-Elk-1 complex is indicated. An addi- 
tional complex (marked with an asterisk) probably 
represents a complex of E74 with a proteolytic 
fragment of Elk-1 . 

To examine signaling pathways that reg- 
ulate SRE-mediated gene expression, we in- 
vestigated the phosphorylation of the TCF 
proteins Elk-1 and SAP-1. Protein kinases 
present in extracts of cells treated with 
phorbol ester (TPA), UV radiation, or the 
proinflammatory cytokine interleukin-1 
(IL-1) were examined after SDS-polyacryl- 
amide gel electrophoresis (SDS-PAGE) 
through use of an in-gel assay with the 
substrate polymerized in the gel (Fig. 1A). 
Treatment with TPA caused increased 
phosphorylation of myelin basic protein 
(MBP), Elk-1, and SAP-1 by two protein 
kinases of 42 and 44 kD. Treatment with 
IL-1 or exposure to UV radiation caused 
increased phosphorylation of c-Jun and 
Elk-1 by two distinct protein kinases of 46 
and 55 kD. A low level of SAP-1 phospho- 
rylation by the UV- and IL-1-activated 46- 
and 55-kD protein kinases was also ob- 
served (Fig. 1A). The substrate specificity 
and pattern of activation indicates a possi- 
ble role for the ERK (42 and 44 kD) and 
JNK (46 and 55 kD) groups of MAP kinases 
(12). To test this hypothesis, we examined 
the phosphorylation of Elk-1 and SAP-1 by 
using immunopurified MAP kinases. The 
ERK2 protein kinase phosphorylated both 
Elk-1 and SAP-1 (Fig. 1B). In contrast, the 
JNKl protein kinase caused Elk-1 phos- 
phorylation, but only a small amount of 
SAP-1 phosphorylation (Fig. 1B). Previous 
studies have identified c-Jun (12) and 
ATF2 (14) as JNK substrates. Comparison 
of Elk-1 with c-Jun and ATF2 indicates 
that JNK causes a similar amount of phos- 
phorylation of each of these substrates (15). 
These data confirm previous studies that 
demonstrate a role for the ERK signal trans- 
duction pathway in the regulation of Elk-1 
(5-9) and indicate that the ERK pathway 

A - - - - + +  JNK 
B - - - - + +  JNK 

- - + + - -  ERK - - + + - -  ERK - + + + + + Elk-1 - + + + + + Elk-1 
- + - + - + A T P  - + - + - +  ATP 
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inay also regulate SAP-1. In addition, these 
data demonstrate that TCFs may be physi- 
ological targets of the JNK signal transduc- 
tion pathway (Fig. 1 ) .  

Phosphoamino acid analysis of Elk-1 
phosphorylated by ERK and JNK demon- 
strated the presence of both phosphoserine 
and phosphothreonine (Fig. l C ) ,  but the 
phosphorylation of Elk-l by these MAP 
kinases is not identical. Equal amounts of 
phosphoserine and phosphothreonine were 
detected in Elk-1 phosphorylated by ERK. 
In contrast, a larger amount of phospho- 
threonine than phosphoserine was detected 
in Elk-1 phosphorylated by JNK. The trvp- 
tic phosphopeptide maps of Elk-1 phos- 
phorvlated by JNK and ERK are similar, 
which indicates that these protein kinases 
phosphorvlate the same group of sites (Fig. 
ID) .  These MAP kinase phosphorvlation 
sites have been identified and include crit- 
ical regulatory sites, such as Ser-383 ( 5 , 6 , 8 ,  
9) .  The major difference between Elk-1 
phosphorylated by JNK and ERK is the 
relative amount of phosphorvlation of these 
sites (Fig. ID) .  

Phosphorylation of TCFIElk-1 by ERK 
causes an increase in ternary complex for- 
mation with SRF at the SRE (7, 8 )  and 
decreased ternary complex electrophoretic 
mobility (5, 6). T o  test whether JNK also 
regulates ternary complex formation, we 
compared the effects of phosphorylation of 
Elk-1 by JNK and ERK. Ternary complex 
formation by phosphorylated and nonphos- 
phorylated Elk-1 was exalnlned by electro- 
phoretic mobility-shift analysis (EMSA) 
with coremF (7)  and a 32P-labeled DNA 
probe. Experiments with an SRE oligonu- 
cleotide probe (16) demonstrated that the 
phosphorylation of Elk-1 by JNK or ERK 
caused a large increase in ternary complex 
formation (Fig. ZA, lanes 4 and 6). In con- 
trast, experiments with a 134-base pair 
(bp) fragment derived from the c-fos pro- 
moter as an SRE probe (5)  demonstrated 
ternary complex formation (3' I) in the 
absence of TCF phosphorylation (Fig. 2B, 
lane 2). However, both JNK and ERK phos- 
phorylation of Elk-l caused a large decrease 
in the electrophoretic mobility of the ter- 
nary complex (3" 11) (Fig. ZB, lanes 4 and 
6) .  These data demonstrate that JNK and 
ERK phosphorylation of Elk-l cause similar 
changes in ternary complex formation at 
the SRE. Because Elk-l binds to the SRE 
in a n  SRF-dependent manner ( 2 ) ,  we used 
a different assay to directly examine the 
effect of phosphorylation on the DNA- 
binding properties of Elk-1. This assay 
used a DNA probe that contains the Dro- 
sophila E74 ets-like site that binds Elk-l in 
the absence of SRF (17). Phosphorylation 
of Elk-l by JNK or ERK i n d ~ ~ c e d  binding 
of Elk-1 to the E74 probe (Fig. ZC, lanes 3 
and 6) .  Thus, JNK and ERK induce in- 

creased Elk-l DNA-binding activity. 
The phosphorylation of Elk-1 by JNK 

and ERK suggests that activators of both 
MAP kinase signal transduction pathprays 
would cause increased SRE-dependent gene 
expression. \Ve therefore compared the ef- 
fects of TPA and IL-1 on gene expression in 
cotransfection experiments with the report- 
er plasmid pSRE-Luc. Although TPA 
caused activation of the ERK group of MAP 
kinases (Fig. 1A)  and IL-1 caused activa- 
tion of the JNK group of MAP kinases (Fig. 
l A ) ,  both TPA and IL-1 caused a similar 
increase in reporter gene expression (Fig. 
? A ) .  This effect of TPA and IL-1 was 

Fig. 3. Actvation of TCF/Elk-I-de- 
pendent gene expression by the 
JNK and ERK signal transduction 
pathways. (A) The effect of treat- 
ment with L-1 or TPA on the lucif- 
erase activity detected in extracts of 
CHO cells transfected with an SRE- 
uc~ferase reporter plasmid was ex- 
amined (31). Control experiments 
were done by expression of domi- 
nant-negative Elk-1 (DN-Elk) that 
has a deleton of the COOH-termnal 
activaton domain (26). Transfecton 
efficiency was m'on~tored with a 
p-gaactos~dase expresson vector. 
The data are presented as the ratio 
of luciferase (light units) to p-galac- 
tosidase optical density (OD) units 
measured in the cell extracts (mean 
+ SD. n = 3). (B) The effect of dom- 
inant-negatve MKK4 (DN-MKK4) on 
GAL4/Elk-dependent reporter gene 
ex~ression was examlned in cells 

blocked by a dominant-negative Elk-1 de- 
rivative (Fig. 3 A )  indicating that the in- 
creased reporter gene expression was TCF- 
dependent. The effect of TPA can be ac- 
counted for by the ERK signal transduction 
pathway (5-9). Control experiments were 
done to confirm that the actions of IL-1 
were mediated by the JNK signal transduc- 
tion pathway. The protein kinase MKK4 
(also termed SEKlIJNKK) phosphorylates 
and activates JNK (1 8, 19). Dominant-neg- 
ative MKK4 inhibited IL-1-stimulated re- 
porter gene expression but caused only a 
small decrease in the effects of TPA (Fig. 
3B). These data demonstrate that the ef- 

1 Control 
DN-Elk 

801A T 

,,I. 20 ' hk 
0 
Control lL-1 TPA Serum O~ontro l  IL-1 TPA Serum 

P z 
a~ 1 Control 

$ 2 4 O 1 B  
c DN-MKK4 =) 

F 81 D T T 

160 

120 

80 

O control IL-i TPA O control MEKI MEKKI 

treated with IL-1 or TPA (26,37). (C) 
The effect of treatment wth L - I  , TPA, or serum on reporter gene expression In cells cotransfected with the 
reporter pasmid pG5El bLuc and an expression vector that encodes the GAL4 DNA-bndng doman 
(Control), wild-type GAL4/Ek-1 fusion proten, or mutated GAL4/Ek-1 (Ser-383 replaced with Ala) was 
examined (26. 37). (D) The effect of constitutively actvated MEKl (26) and MEKKI (26) on reporter gene 
expression was examned with cells cotransfected w~th an SRE-uciferase reporter pasmid (37). The cells 
were transfected w~th 10 ng of MEKKI  or 500 ng of MEKl expression vector. 
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.- - SRE SRE-mediated gene expresson. CHO cells were transfected with 
GAL4IElk ncreasing amounts of a const~tutively activated MEKKl expression 

vector (25, 26). (A) The effect of MEKKl on the expression of lucl- 
ferase by an SRE-ucferase reporter plasmid was examined. The 
effect of MEKKl on the transcriptional activity of Elk-1 was exam- 
ined in cotransfection assays with an expresson vector encoding a 
GAL4/Ek-1 fusion proten and a reporter plasmid (pG5El bLuc) with 
GAL4 DNA-binding sites cloned upstream of the, uciferase gene 
(37). Transfection efficiency was monitored wbth @/p-galactosidase 
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fects of IL-1 are independent of the ERK 
pathway and are consistent with a role for 
the JNK signal transduction pathway. 

The Elk-1 activation domain is regulat­
ed by phosphorylation (5, 6, 9). To examine 
the function of the Elk-1 activation domain 
in cells treated with TPA or IL-1, we per­
formed cotransfection assays with an ex­
pression vector that encodes the Elk-1 ac­
tivation domain (residues 307 to 428) fused 
to the GAL4 DNA-binding domain (Fig. 
3C). TPA and IL-1 caused increased 
GAL4-dependent reporter gene expression 
in cells transfected with GAL4/Elk-1 (Fig. 
3C). In contrast, deletion of the Elk-1 se­
quence from the GAL4/Elk-1 fusion protein 
or replacement of the MAP kinase phos­
phorylation site Ser-383 (5, 6, 8, 9) with 
Ala blocked the increased reporter gene 
expression (Fig. 3C). These observations 
are consistent with a role for both the ERK 
and JNK signal transduction pathways in 
the regulation of Elk-1 transcriptional ac­
tivity by phosphorylation. 

Because TPA and IL-1 may activate 
multiple signal transduction pathways, we 
performed further studies to obtain more 
direct evidence for the role of the ERK and 
JNK MAP kinase signal transduction path­
ways in vivo. Expression of activated MEK1 
and MEKK1 causes constitutive activation 
of the ERK (20, 21) and JNK (22, 23) 
groups of MAP kinases, respectively. We 
therefore examined the effect of activated 
MEK1 and MEKK1 on SRE-dependent 
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Fig. 5. SRE-dependent gene expression is acti­
vated by the ERK and JNK signal transduction 
pathways. ERK and JNK are two groups of MAP 
kinases that are activated by functionally indepen­
dent signal transduction pathways (12). The ERK 
signal transduction pathway is activated by 
growth factors (for example, EGF and TPA), 
whereas the JNK pathway is activated by environ­
mental stress (for example, UV radiation) and 
proinflammatory cytokines (for example, IL-1 and 
tumor necrosis factor). The TCF Elk-1 is a sub­
strate for both ERK and JNK MAP kinases. This 
phosphorylation causes increased ternary com­
plex formation at the SRE and increased tran­
scriptional activity. Thus, the SRE is a site of func­
tional integration of independent MAP kinase sig­
nal transduction pathways. 

gene expression. Both MEK1 and MEKK1 
caused increased reporter gene expression 
(Fig. 3D). Control experiments were done 
to examine the effects of MEKK1 on MAP 
kinase activity. Dose-response analysis dem­
onstrated that transfection with increasing 
amounts of the MEKK1 expression vector 
caused activation of SRE- and GAL4/Elk-
1-dependent reporter gene expression (Fig. 
4A). Measurement of MAP kinase activity 
demonstrated that JNK, but not ERK, was 
activated by MEKK1 (Fig. 4B). Together, 
these data demonstrate that JNK activation 
in vivo is associated with increased SRE-
dependent gene expression. 

A major target of the JNK signal trans­
duction pathway is the AP-1 transcription 
factor that is composed of dimeric complex­
es formed from members of the Fos and Jun 
bZIP subfamilies (12). Phosphorylation of 
c-Jun by JNK causes the activation of AP-1 
(12). In addition, the activation of AP-1 
also results from increased expression of Fos 
and Jun proteins (10). Increased expression 
of c-Jun may result from the autoregulation 
of the c-jun promoter at the proximal AP-1 
site (24). TCF phosphorylation by JNK may 
contribute to increased c-Fos expression by 
activating the c-fos promoter at the SRE 
(Figs. 3 and 4). Thus, the JNK signal trans­
duction pathway activates AP-1 by multiple 
mechanisms, including the phosphorylation 
of preexisting TCF and c-Jun transcription 
factors. 

This study establishes that the SRE is a 
site of integration of signal transduction 
pathways (Fig. 5). Phosphorylation of Elk-1 
by the ERK and JNK groups of MAP ki­
nases causes increased ternary complex for­
mation at the SRE and increased transcrip­
tional activity. The ERK signal transduc­
tion pathway mediates the effects of protein 
kinase C and receptor tyrosine kinases (12). 
In contrast, the JNK signal transduction 
pathway mediates the effects of proinflam­
matory cytokines and environmental stress 
(12). The phosphorylation of Elk-1 by JNK 
and ERK therefore represents one mecha­
nism that can account for the integration of 
these signal transduction pathways in vivo 
to yield coordinated biological responses to 
extracellular stimuli. 
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The extracts were centr~fuged at 100,000g for 15 
mln at 4°C Immune complex klnase assays were 
done w~ th  extracts prepared from cells expressing 
epitope-tagged ERK2 (HA) or JNKl (Flag) The 
ep~tope-tagged prote~n kinases were mmunopre- 
ciptated by Incubation for 2 hours at 4°C w~ th  the M2 
Flag monoclonal antibody (B-Kodak) or HA poly- 
clonal ant~body (BAbCo) bound to protein G-Sepha- 
rose (Pharmaca-LKB B~otechnology). The mmuno- 
precip~tates were washed twce w~ th  ysls buffer and 
twice w~ th  k~nase buffer [25 mM Hepes (pH 7.4), 25 
mM p-glycerophosphate, 25 mM MgCI,, 0 5 mM 
DTT, 0 1 mM sod~um orthovanadate] The k~nase 
assays were ln~t~ated by the add~t~on of 1 y g  of sub- 
strate protelns (Hs6-Elk-1 or Hs6-SAP-I) (29) and 
50 FM [y-32P]ATP (10 C~/mmol) ~n a f ~ n a  volume of 
40 y The reactons were termnated after 30 m n  at 
25% by the addt~on of Laemm sample buffer, The 
phosphoryation of the substrate protelns was exam- 
ned after SDS-PAGE by autoradography In-gel ki- 
nase assays were performed w~ th  0.25 mg/m of 
substrate proteln (MBP, GST-EkC, GST-SAPC, or 
GST-Jun) (29) poymer~zed In the gel as descr~bed 
(271. Phosphoamno acid analysis and phosphopep- 
tide mapplng of H1s6-Elk-1 phosphorylated by 
JNKl was done as descr~bed (271 The hor~zontal 
dmens~on of the pept~de maps was electrophoresis 
and the vertical dimenson was chromatography 

29 Bacter~a expression of GST-Jun was done as de- 
scribed (271. We constructed expresson pasmds for 
GST-EkC (Elk-1 residues 307 to 428) and GST-SAPC 
(SAP-I residues 287 to 431) by subconng PCR frag- 
ments of Elk-1 and SAP-I In the Bam HI and Eco Rl 
sltes of pGEX-3X (Pharmac~a-LKB B~otechnology). 
Glutath~one-S-transferase (GST) fuson protelns were 
purlfled by gutath~one affnlty chromatography [D. B. 
Sm~th and K. S. Johnson, Gene 67, 31 (1 988)] The 
full-ength Elk-1 proten (resdues 1 to 428) fused to a 
COOH-terminal hexah~s:~dlne tag (H1s6-Elk-I) was 
expressed in bacteria w~ th  the pasmd  pQE6/16Ek 
(8) The full-length SAP-I proteln (res~dues 1 to 431) 
fused to a COOH-term~nal hexah~st~dne tag (Hs6- 
SAP-I) was expressed in bacter~a w th  a plasmid con- 
structed by the sequenta ligat~on of three separate 
SAP-I PCR fragments conta~nng unique Introduced 
restrlctlon sites n to  the vector pET2ld (Novagen) 
Hexahstdine fuson protens were purlfed by n~ckel 
chelate aff~nty chromatography as descr~bed by the 
manufacturer (Novagen) 

30. The DNA-bnding actlvty of Elk-1 was examined by 
EMSA with "P-abeed DNA probes The E74 and 
SRE double-stranded ol~gonucleot~de probes have 
been described (76) A 134-base pair (bp) PCR 
fragment of the c-fos promoter containing the SRE 
was prepared (5) Phosphorylat~on of H1s6-Elk-1 
was done with recombnant ERK2 and JNKl MAP 
klnases actvated n vltro by the MAP kinase knases 
MEKl and MKK4, respect~vely. Epitope-tagged 
MKK4 was solated from UV-irradated transfected 
COS cells with the M2 monoclonal ant~body (78). 
MEKl was solated from EGF-treated COS cells w~ th  
the rabbit antibody 2880 [M. Wartmann and R. J. 
Dav~s J. Biol. Chem. 269 6695 (1994)l immune 
complex knase assays were done with the MEKl 
and MKK4 MAP kinase k~nases and 6 k g  of bacte- 
r~aliy expressed ERK2 and JNKl (78) n knase buffer 
(28) supplemented w~ th  200 FM ATP for 20 min at 
22°C The phosphorylated and act~vated MAP kl- 
nases (ERK2 and JNKI) were Incubated w~ th  0.5 ~g 
of His6-Eik-1 In 20 y of k~nase buffer (28) supple- 
mented w~ th  100 FM ATP for 20 min at 22% DNA- 
b~ndlng assays were done w~ th  133 mM KC1 and 
w~thout salmon sperm DNA [A. D. Sharrocks, H. 
G I ~ ,  P E. Shaw, Mol. Cell. Biol. 13, 123 (199311 w~ th  
50 ng of Elk-1 for bnding to the E74 probe and 10 ng 
of Elk-1 for ternary complex analys~s at the SRE. 
Ternary complex format~on assays were done w~ th  
coreSRF In the b~nding assays (71 Control experl- 
ments were done w~thout ATP Prote~n-DNA com- 
pexes were analyzed by PAGE (5% gel) In 1 x trls- 
borate EDTA and visualzed by autoradography. 

31 SRE-dependent gene expresson was mon~tored In 
cotransfect~on assays (25) w ~ t h  the reporter plas- 
m ~ d  pSRE-Luc, whch  contans two coples of the 
c-fos SRE cloned upstream of a mn~ma l  promoter 
element and the f~reily ucferase gene [A. Seth et 

a / ,  J. Biol. Chem. 267, 24796 (I 992)l. The ac tv~ty  
of GAL4/EkC (5) was measured in cotransfecton 
assays with the reporter plasrnid pG5El bLuc [A 
Seth e i  a/., J. Blol. Chem 267, 24796 (1 992)] Thls 
reporter plasm~d contains f~ve GAL4 s~tes cloned 
upstream of a m n m a  promoter element and the 
firefly ucferase gene Transfect~on effcency was 
monitored with a control plasm~d that expresses 
p-galactos~dase (pCH I 10; Pharmac~a-LKB BIO-  
technology). The uc~ferase and p-galactosidase 
activty detected ~n cell extracts was measured [S 
Gupta, A. Seth R J Davis, Proc. Natl. Acad. SCI. 
U.S.A. 90, 321 6 (1 993)) 

32. JNK actvity was measured by an Immune complex 
knase assay w ~ t h  a rabbt polyclonal antibody to JNK 

(74) and the substrate c-Jun ERK activ~ty was mea- 
sured w ~ t h  the substrate MBP (22). 
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Inactivation of the Mouse Huntington's 
Disease Gene Homolog Hdh 

Mabel P. Duyao,* Anna B. Auerbach,*L Angela Ryan,* 
Francesca Persichetti, Glenn T. Barnes, Sandra M. McNeil, 

Pei Ge, Jean-Paul Vonsattel, James F. Gusella, 
Alexandra L. Joyner,Warcy E. MacDonaldS ' 

Huntington's disease (HD) is a dominant neurodegenerative disorder caused by expan- 
sion of a CAG repeat in the gene encoding huntingtin, a protein of unknown function. To 
distinguish between "loss of function" and "gain of function" models of HD, the murine 
HD homolog Hdh was inactivated by gene targeting. Mice heterozygous for Hdh inac- 
tivation were phenotypically normal, whereas homozygosity resulted in embryonic death. 
Homozygotes displayed abnormal gastrulation at embryonic day 7.5 and were resorbing 
by day 8.5. Thus, huntingtin is critical early in embryonic development, before the emer- 
gence of the nervous system. That Hdh inactivation does not mimic adult HD neuropa- 
thology suggests that the human disease involves a gain of function. 

Huntington's disease IS a dominant neuro- 
degenerative disorder ( I )  wlth a character- 
istic pattern of neuronal loss (2)  and conse- 
quent chorea, psych~atr~c alterations, and 
intellectual decline. HD results when one 
copy of the gene encoding huntingtin, an 
-350 kD cytoplasmic proteln found in fetal 
and adult peripheral tissues and nervous sys- 
tem (3-5), contalns an expanded stretch of 
CAG trinucleotides. Although the CAG 
repeat is nortnally a Mendelian polymor- 
phlsrn (11 to 34 un~ts) ,  the HD expanded 
repeat (37 to more than 100 units) is unsta- 
ble through meiotic transmission and its 
length is correlated wlth d~sease severity (3). 

The HD defect probably acts at the pro- 
teln level, as the HD CAG repeat is trans- 

M P Duyao, A. Ryan, F. Pers~chettl, G. T Barnes S. M 
McNeil, J. F. Gusela, M. E. MacDonald, Molecular Neu- 
rogenetics Unit, Massachusetts General Hospital, 
Charlestown, MA 021 29, USA. 
A. B. Auerbach and A L Joyner, D v ~ s o n  of Molecular 

lated, alterlng huntingtln by elongating a 
polyglutamine segment near the NH,-ter- 
minus (4,  5). One possibility is that elon- 
gating the polyglutamine stretch reduces 
huntinetln's normal act~vitv, but individu- 
als wit[ one copy of the noimal gene inac- 
tivated by translocation do not develop HD 
despite a 50% reduction (6). However, a 
huntingtin loss of funct~on could st111 cause 
HD if the abnormal protein also produces 
"dominant negative" lnh~bi t~on of its nor- 
mal counterpart. An  alternative is that the 
polyglutamine segment confers a new prop- 
erty (galn of function) that may be unrelat- 
ed to huntlngtln's normal activlty. 

To choose between these models, we een- , " 

erated an inactivating mutation of the 
mouse Hdh gene (7) by tdrgdied disruption. 
If HD involves a dominant loss of funct~on, 
we would expect mice het&rd;ygous for Hdh 
inactivation to be phenotypically normal 
(like their human counterparts with HD 

and Developmental B~ology, ~ o u n t  S ~ n a  Hospital, To- gene translocations) and homozygous 
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town, MA 021 29, USA tively, if HD involves a dominant galn of 
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