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Female Responses to Ancestral Advertisement 
Calls in Tungara Frogs 

Michael J. Ryan and A. Stanley Rand 

Phylogenetic techniques were used to estimate and reconstruct advertisement calls at 
ancestral nodes. These calls were used to investigate the degree of preference of female 
tungara frogs (Physalaemus pustulosus) for both extant and ancestral calls. Females did 
not discriminate between calls of males of their own species and calls at their most recent 
ancestral node. They also recognized calls of three extant species and at four ancestral 
nodes as the signals of appropriate mates. Both shared ancestral history, and call con- 
vergence might differentially influence call preferences. 

DLfferences in  mate recognltlon systems tral species. T h e  uniclue geological history 
behaviorally isolate species and are thought of the Hawaiian islands and the amazing 
to  he one of the  ~l los t  inlportant causes of diversity of its indlgenouc fruit flies have 
speclation; mate recognition, however, re- 
quires coordination of signal anii receiver 
(1). T h e  fact that such coordlnatiotl char- 
acterizes many species is evidence that this 
functional association persists, hut it tells us 
little of the  historical patterns by which it 
arose. Species-spec~fic mate recognition 
could evolve by the  coordinateii iiivergence 
of signal-receiver interactions of each incip- 
lent species, as has been suggested by some 
hybridization stuiiies (2) .  Alternatively, the  
evolution of signals anii receivers could oc- 
cur in a more haphazard manner, in which 
stimuli that make signals more or less pre- 
ferred are gaitleii or lost through evolution- 
ary history. In  this case, other aspects of the  
calls that are perhaps irrelevant to  the  re- 
celver preference could result from srochas- 
tic processes, constraints, or selection in 
other contexts, as has heen argued from 
studies showing asymmetric mating prefer- 
ences ainong species (3) .  

To truly ~lnderstand how species recog- 

allowed SLIC~I  an  approach to studies of mate 
recognition (3) .  In  most stuiiies, however, 
there are no  clear ancestor-descendent re- 
lations arnone extant snecies. W e  have nar- 
tlally c i r c~~mven ted  this problem hy esti- 
mating anii reconstructing the  mate recog- 
nltlon signals at ancestral noiies; these 
nodes represent hypothesized ancestral spe- 
cies. W e  then conducted phonotaxis exper- 
iments to uuantlfv female res~ollsiveness to 
these slgnhls. ~ l l e s e  experiments deter- 
mined if the  female's response was eliclted 
only hy the  conspecific call, as woulii he 
suggesteii hy the  coordillated divergence of 
signal and receiver, or if ancestral calls con- 
tained key stirnull that effectively elicited a 
response, as is collcl~liieii from studies of 
mating asymmetries. If females xe re  respotl- 
sive t o  heterosnecific calls, incbdlne: those 
of hot11 extant anii hypothesized ancestral 
saecies. we also determined the  degree to  u 

rvhich fetnale preferences were influenceii 
by phylogenetic divergence anii overall call 
similarity. 

W e  examined the  aiivertisernent calls 
and phylogenetic relations of five species of 
frogs in the Physalnemus j~ustulosus species 
group and three of their close relatives (Fig. 
1) .  T h e  tilllgara frog, P. pustulosus, is sym- 
patric with P,  enesefae in Venezuela and 
a l lo~atr ic  with the other species. For 10 
illdivid~lals of each specles, 12 call parame- 
ters were measured and average calls were 
d~gitally synthesized with these variables (4) 
(Fig. 1) .  Phylogenetic relations were deter- 
~ n l n e d  from an  analysis of several morpho- 

I Fi Td zl~~Jl 
800 

Root ms 
nition evolves, it is preferable to  investigate 

Fig. 1. The phylogenetic reatons of frogs of the P, pustulosus specles group and three closely related directly the signals anii receivers of ances- sneces  fP, enesefae, suecies a ,  and P. eohi~oifer) (5). S ~ e c e s  a and sDeces b are undescribed. Shown , , ,  , , ,  

are sondgrams of the synthetc advertisement calls, whch were determned from species' means for the 
M, J, Ryan' Department Of zOOOgys University Of Texas. extant (tip) species (4) or from phylogenetc estimates for calls at the ancestral nodes (7). Branch lengths 
Austn, lX 78712, USA, and Smthsonian Tropca Re- 
search Institute, Apdo. 2072, Balboa, Panama are estmates of changes n mtochondria DNA base sequences (7) A discrimnant function analysis 
A s Rand, Smlthsonlan Troplca ~~~~~~~h lnst1tute, shows that 92% of the indivduals of extant species, 10 per speces,  are assgned to the correct specles 
Apdo 2072, Balboa, Panama by call alone. Numbers ndcate branch lengths (7). 

390 SCIENCE VOL. 269 21 JULY 1995 



loglcal characters, 27 allozyines, and 1200 There are several phylogenetlc proce- 
base aairs of the  12s  mitochotliirial genome ii~lres for deducing auantitative tralts a t  an- - L '  

and ~ t s  flanking regions; call characters were cestral nodes (6) .  Estimates of call charac- 
not used 111 the  phylogenetic a~lalysls (5) ters for the  seven ancestral nodes 111 the  
(Flg. 1 ) .  Bootstrap estimates showed strong phylogeny were derived from two widely 
statistical support for all of the  nodes of the  ~ ~ s e i i  methods, local squared-change parsi- 
phylogeny (all P < 0.05) (5). inony and squared-change parsimony. Both 

Fig. 2. Phonotactlc responses of female tungara frogs (P pustuiosus) to cotispec~f~c (Con ) versus 
heterospeclflc (Het ) calls (8) 

.- 
response 

Fig. 3. Phonotactic responses of female tungara frogs (P. pustuiosus) to heterospecifc calls versus no 
response, whch includes no phonotaxis and a response to white noise (8). In only four of the 280 tests 
did females exhbit ~honotaxs  to noise. 

metl~oiis yielded similar results, o n  average 
within 5% of one another (7). W e  used the  
estinlates of call traits derived from local 
squared-change parsimony to  digitally syn- 
thesize the calls for each of the  ancestral 
nodes (Fig. 1) .  These calls, together with 
the  calls of extant species, were used 111 

phonotaxis experii~le~lts,  and we refer to  
both sets of calls as heterosnecific. 

W e  used pho~lotaxis experiments with 
fernale tilngara frogs, P. ptutulosus, to quan- 
tify two expressions of preference: discrirni- 
 lat ti on and recogllition (8). W e  operatlonal- 
ly define discrimination as the degree to 
which female tilngara frogs choose a cotlspe- 
cific signal over a heterospecific signal, and 
recognition as the degree to rvhlch fenlale 
phonotaxis is exhibited to a signal in the 
absence of other slgnals; we realke that these 
definitions are arbitrary. In the recognition 
experiments, we used white noise as a con- 
trol stimulus. Both dlscriminatioll and rec- 
ognitlon assess blologlcally realistic tasks for 
feillales searcl1111e for mates. 

For both sets of feinale responses, we also 
deterinilleii the  degree to which phyloge- 
netic distance ainong species and overall 
slmilarlty ainong calls predlct the  responses 
of female tilngara frogs. Call  silnilarity was 
determined with the  use of a prmciple com- 
ponent analysis and hy measurement of the  
Euclidean distance hetween each of the  
heterospecific calls and the  call of P. ptts- 
tulosus (9) .  W e  iieter~nlned the phyloge- 
netic relatedness or distance hv estimating 

u 

the  numher of changes in the  initochotldri- 
a1 DNA sequence hetween P. pttstttlosus and 
each of the  other species and lloiies (9) .  
Call similarity and phylogenetic distance 
were not  sig~lificalltly correlated ( r  = 0.43 
and P = 0.13).  T h e  degree to  which phy- 
logenetic distance and call similarity pre- 
dlct female responses gives some indicatlotl 
of the  relative influences of shared evolu- 
tionary history and convergetlce of signal- 
receiver svsterns. 

Felllale tilngara frogs showed strong dis- 
c r i~n~ l l a t ion  between the  conspecific call 
and most of the  heterospeclfic calls (Fig. 2). 
T h e  null hypothesis of a ralldo~u response- 
that  is, the  inability to  discriminate-was 
rejected in all cases hut one; females did not 
discriinitlate between the  sonspecific call 
and the  call a t  the  imlnediate ancestral 
node (node c). These results suggest that  
although the  calls of lnak  tii'ngara frogs and 
those of their ilninedlate ancestor differ sig- 
nificantly (91, these differences do  not in- 
fluence feinale areference. Thus, the  evolu- 
tion of calls need not be in response to  
feinale preferences but could result fro111 
stochastic factors or selection related to  
other aspects of the  call. This conclus~on 
could not have been reached if we lnerelv 
assessed the  responses of female t i~ngara 
frogs to  the  calls of extant species. 
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Although female tungara frogs usually 
preferred the conspecific call, they did re­
spond to several heterospecific calls. The 
null hypothesis that heterospecific calls are 
not recognized (8) was rejected for the calls 
of three extant species and four ancestral 
nodes (Fig. 3). Calls of species a, species b, 
and P. coloradorum elicited statistically sig­
nificant phonotactic responses from female 
tungara frogs. These extant species are not 
the closest relatives of Physalaemus pustula-
tus; species a is not even a member of the P. 
pustulosus species group. 

Tungara frog females also recognized the 
calls at four ancestral nodes. These four 
nodes are those most closely related to P. 
pustulosus (Fig. 3; root, nodes c, d, and e). 
Neither the calls at the node immediately 
ancestral to P. coloradorum and P. pustulosus 
(node f) nor the two immediate ancestral 
nodes of the outgroup species elicited re­
sponses from female tungara frogs. Unlike 
the phonotaxis experiments testing prefer­
ences between conspecific and heterospe­
cific calls in which females almost always 
preferred the conspecific call, these experi­
ments showed that stimuli that elicit pho­
notaxis to advertisement calls do not arise 
de novo with each speciation event but 
instead are evident throughout the recent 
evolutionary history of the species. 

Univariate analysis showed that phyloge-
netic distance was correlated with the fe­
males' degree of discrimination (number of 
responses to the heterospecific call) between 
conspecific and heterospecific calls (r = 
-0 .61 and P = 0.02), but not with the 
females' recognition of heterospecific calls (r 
= -0.45 and P = 0.11). Call similarity 
predicted the females' responses in both ex­
periments equally well (in both cases, r = 
-0.57 and P = 0.03). A stepwise multiple 
regression analysis showed that phylogenetic 
distance best predicts female discrimination 
between calls (P = 0.02); call similarity does 
not explain a significant portion of the re­
sidual variation (P = 0.15). In contrast, only 
call similarity predicts female recognition of 
heterospecific calls (P = 0.03); phylogenetic 
distance is not a significant predictor of 
female recognition (P = 0.36). 

Our results do not indicate a pattern of 
tightly correlated signal-receiver evolution. 
The fact that females do not discriminate 
between the conspecific call and the call at 
the immediate ancestral node suggests un­
even and thus uncoupled rates of signal and 
receiver evolution. Also, signal stimuli that 
elicit recognition are present throughout 
much of the history of the species as well as 
in several extant species. This also rejects 
the hypothesis of a tightly coevolved signal-
receiver system. It appears that in these 
frogs there are call traits widely distributed 
throughout the species group, currently and 
ancestrally, that are sufficient for recogni­

tion. Discrimination in favor of conspecific 
calls, however, is more restricted. Thus, we 
suggest that in this system, stimuli that 
elicit recognition are widespread through­
out the history of these frogs, but that spe­
ciation usually results in addition or fine-
tuning of stimuli effecting discrimination in 
favor of conspecific calls relative to calls of 
close relatives. 

The fact that phylogenetic distance bet­
ter predicts female discrimination between 
conspecific and heterospecific calls and call 
similarity better predicts call recognition 
suggests the possibility of two perceptual 
processes being influenced differently dur­
ing call evolution. This hypothesis could be 
more rigorously tested by experimental iso­
lation of the precise features that elicit pho­
notaxis in tungara frogs for each heterospe­
cific call and then the use of phylogenetic 
inference to determine if these characters 
are shared or are independently derived. 
Estimating and recreating ancestral charac­
ters may be an additional approach for stud­
ies of the evolution of multiple component 
systems. 
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