
lation was specific. A constitutively active 
recombinant human PAK1 phosphorylated 
p47phox and MBP (11) in the absence of 
Rac-GTP, but did not stimulate phosphory­
lation of p67p,lox (Fig. 5A). Modification of 
the NH2-terminus of PAK may cause a con­
formational change that activates the kinase 
catalytic domain. 

In vivo phosphorylation of p47phox during 
neutrophil activation takes place on serine 
residues (Ser303, Ser304, Ser320, Ser328, Ser345, 
and Ser348) that are all located in a 14-kD 
COOH-terminal portion of the protein (12). 
p47^ox p e p t i c j e s 

containing all possible serine 
phosphorylation sites were tested in kinase 
assays (Fig. 5B). Substantial incorporation of 
32P was only observed with a single peptide 
containing Ser328. Additional control pep­
tides such as the cyclic adenosine 3',5'-mono­
phosphate-dependent protein kinase (PKA) 
substrate Kemptide or a protein kinase C 
(PKC) peptide substrate were not phosphory­
lated by PAK. A histone H4 peptide previ­
ously shown to be a substrate for an fMLP-
stimulated neutrophil kinase (13) was phos­
phorylated to a similar extent as was the 
p47phox peptide. These peptide data indicate 
that PAK phosphorylates a physiologically 
relevant site in p47phox; this remains to be 
confirmed in vivo. The PAKs we have iden­
tified have many of the properties of a group 
of renaturable serine-threonine kinases that 
participate in NADPH oxidase activation 
(14), including inhibition of PAK activation 
by phosphatidylinositol 3-kinase inhibitors 
(11). We propose that we have identified the 
major 63- to 69-kD renaturable neutrophil 
kinases as PAK1 and PAK2. 

We have established that a G protein-
coupled receptor can regulate PAKs in mam­
malian cells. Our findings therefore support a 
link between the activation of heterotrimer-
ic G proteins and the activity of Rac and 
related GTPases. Evidence from earlier stud­
ies indicates that Rac regulates the NADPH 
oxidase at the membrane level (15), and a 
direct interaction between Rac and p61phox 

has been reported (16). The present work 
suggests that PAK-mediated phosphoryla­
tion events on p47phox may play an important 
role in NADPH oxidase regulation. 
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homology and by virtue of their association 
with (^-microglobulin 0 2 M ) (J). Howev­
er, they are as similar to MHC class II as to 
class I molecules in their a2 domain, with 
little apparent similarity to either in the a1 

domain. CDI molecules are expressed on 
antigen-presenting cells (2) and are recog­
nized by selected T cells (3), but an anti­
gen-presenting function for mCDl (4) or its 
human equivalent hCDld has not been 
reported. With less than 40% structural 
homology in the a ^ domain to mCDl 
(5), hCDlb can present nonpeptidic li-
gands (mycolic acids) derived from myco­
bacteria to T cells (6), but the structure of 
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the antigens bound to hCDlb  and the na-
ture of the proposed interaction has not 
been determined. T o  identify the possible 
peptide binding ability of mCD1, we pro-
duced recombinant soluble CD1-P2M corn-
plexes in Drosophila melanogaster cells and 
used them to screen a random peptlde 
phage display l~brary (RPPDL). The  ab-
sence of peptide-loading machinery in D. 
melanogaster cells results in the expression 

of class I molecules that are properly folded 
and functionally competent but essentially 
devoid of bound peptide (7).W e  and oth-
ers ha\,e previously shown this approach 
to be usefill in  defining peptlde binding 
motifs for classical and nonclassical M H C  
class I (8) and class I1 molecules (9) .  

Each clone of the RPPDL contained a 
random 22-amino acid sequence at the ma-
ture NH2-terminusof the gene VIII protein 
(filamentous coat protein of the M I 3  bac-
terio$age). Recombinant soluble mCDl 
was engineered with a COOH-terminal 
hemagglutinin ( H A )  tag, an epitope de-
rived from the influenza H A  protein (10, 
11). In this way, mCD1-phage complexes 
could be identified with a H A  tag-specific 
antibody. Forty-seven different clones were 
selected by mCDl binding (Table 1 ) .  
Alignment of the NH2-terminal sequences 
encoded by these phages shows a well-de-
fined core tnotif consisting of an aromatic 
Phe or Trp at posltlon 1 (100% of the 
clones), an amino a c ~ dwith a long aliphatic 
side chain (either Ile, Leu, or Met) at posi-
tion 4 (80%), and a Trp at position 7 
(75%). A large proportion (25 out of 47) of 

the clones had either His or Asn at position 
3. A minority of the clones did not fit this 
core motif. However, all of thetn could be 
aligned with an aromatic residue near the 
NH2-terminuscorresponding to pos~tion1 of 
the core. Therefore, mCDl seems to select 
phages with a hydrophobic binding motif, 
preferring aromatic residues at pos~tions1 
and 7 and aliphatic residues in posltion 4, 

with an overhanging NH2-terminus. 
To confirm the RPPDL data, we synthe-

sized a peptide corresponding to the full-
length, NH2-terminal sequence of clone 99. 
Binding of I2jI-labeled p99 (see Table 2 for 
nomenclature) to mCDl (12)  was determined 
to be in the micromolar concentration range 
(Fig. 1A). The dissociation constant was cal-
culated to be 0.9 p,M by Scatchard al~alysls 

, " " ,  
-7 -6 -5 -4 0 0 0  0.05 0.10 o . ' i 5 0 . i 0  

IogImCDll Bound (nM) 

Fig. 1. Mouse CDl binds spec~ficpeptides in solut~on.(A) 12"-p99 binds to mCDl in the micromolar 
range. (6)Scatchard analys~sof i251-p99bind~ngto mCDl shows a value for K, of 9 X lo-' M Values 
for bound/free range from 0 to 0.0002.(C)Synthetc peptdes correspondingto different sequences of 
selected phage clones bind to mCDl as tested by a compet~t~vebinding assay. Curves represent the 
percent of inhibition of i25"Ip99binding to mCDl versus the logarithm of the molar concentration of 
nhibtor peptide (Inh) and were fitted by nonnear regression analyss to a sigmodal function. 

Table 2. Structural requrements for peptde binding to mCDl (26).Dissociation constants (molar)for 
unlabeled peptides were determined from the molar concentration giving 50% inh~bitionof 12"-p99 
binding to mCDl in a competitive binding assay (12, 27). The ratio relative to p99 is shown. Synthetic 
peptides were named correspondingto the selected clone from the phage library. Position 1 is the first 
anchor position; amino acids NH,-terminal to this pos~tionwere assigned negative numbers. Peptide 
sequences of the p99a series correspond to a variant phage clone derived from phage 99 (8)and show 
fvefold h~gheraff~nitythan their p99 counterparis. NB,  nonbinder, defned as those peptides that show no 
sgnifcant inhib~tionat a 200 p,M concentration. 

Peptide Sequence KA Ratio 

1 4 7  
ELWRNLRLWGYCMNLSNMPL 

LSFDWSELRRWGTWAAAEVFEL 

YEKPWQNLWDWGAEAFKDLID 

YEHDFHHIREWGNrnVKNFLAW 

Table 1. Mouse CDl-b~ndingmot~fdetermined 
by screenng RPPDL (10, 26). The a~gnmentof 
the sequences of the d~fferentmCD1-specific 
phage clones shows a bindng motif in positons 1, 
4,  and 7. Amino acds specifc to the motif are 
shown n boldface. An unbiased representation of 
the sequences obtained (oneout of two)ISshown. 

Phage Amino acid sequence 
1 4 7 

2 4  SFCLFDSIFDWGARGAEWHVG 

5 4  ETGIVFHNLTAWGEESVYALHiM 
5 2  SPGLFDNLKTWGTRMEHFMSLS 
1 8  YEKPWQNL!mWGAEAFKDLLDK 

7 ELWRNLRLWGYC:mLSNi?PL 
11 LSFDWSELRRWGTWAAAEVFEL 
3 9 OSFSMMSRWGQEFHWLiWV 

QDWNMLIWGSMLLWSLFGADP 
HDWQSMNHWGGVYGGCVPMCK 

W L W 
F I 
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(Fig. IB), with fast association-dissociation 
kinetics (13). No binding to CD1 was detect-
ed in the same concentration range of a short-
er version '251-p99.-4.10(which lacked the 
eight COOH-terminal amino acid residues), 
suggesting that mCDl preferentially binds 
longer peptides. Three additional sequences, 
which contained the motif but were otherwise 
quite different from p99, were selected from 
the RPPDL. All three peptides tested, corre-
sponding to the full-length,NH2-terminal 20-
to 22-mer sequences of phage clones 7, 11, 
and 18, showed binding to mCDl (Fig. IC), 
and the dissociation constants were similar to 
that for p99 (1.5 x lop7M) (Table 2). 

The data presented suggest that CD1 
binds peptides with extended NH2- and 
COOH-termini flanking the core binding 
motif. To further characterize the require-
ments for binding, we synthesized versions 
of the p99 peptide truncated at either the 
NH,-, the COOH-terminus, or both. Their 
binding affinities were determined as above. 
Progressive truncations at the COOH-ter-
minus resulted in a steady decrease of affin-
ity, an approximately one-half reduction 
per residue (Table 2). Further COOH-ter-
minal truncations near the core binding 
motif significantly affected the ability of the 
peptide to bind mCDl (Table 2, p99.-4.12 
versus p99.-4.10). The situation was similar 
at the NH2-terminus of the peptide, where 
elimination of the four amino acids preced-

" - p18 p l l  -
p99a p99a p99a No pep. 

ing the core motif resulted in a one-fourth 
reduction in the binding affinity. However, 
if further NH,-terminal truncations were 
made beyond the first anchor residue Phe', 
binding of these peptides to mCDl could 
not be detected. A peptide derived from 
p99 with truncations at both the COOH-
and NH,-termini (~99.-2.15)bound with 
higher $finicy than that pCedicted from 
the above experiments, suggesting that op-
timal peptide lengths might be important 
for maximal binding affinity. We conclude 
that peptide binding by mCDl exhibits 
characteristics s~rnilarto those for class I1 
peptide interactions (14). 

The importance of the rnotif for peptide 
binding was tested by substitutions of the 
proposed anchor residues with Ala. Substi-
tution of anchor Phel with Ala resulted in 
a decrease in the ability of the peptide to 
bind mCDl [dissociation constant (Kd) for 
p99.Al was -2 X lop4 MI (Table 2). Ala 
substitution of anchor Ile4 reduced the af-
finity by a factor of 380 and of Trp7 by a 
factor of 240. In contrast, substitution of 
His3 did not alter the bindine affinitv, dern-
onstrating that position 3 is Gobablinot an 
anchor. Surprisingly, double Ala substitu-
tions at positions 1 and 7 produced an 
unexpected, heteroclytic, compensatory ef-
fect, such that bindine was reduced onlv bv" , , 

a factor of 50. Ala substltutions at locations 
other than the anchor positions had rela-

= 100-
8-
U) 75.-
U)Z-
5 50 

E.-
8 25 
3 

0 
p99a - R377 Pre. CD8 CD4 K D IgG 

0 p 9 9 A 1  

-p99a 

40 

1 10 30 
[Peptide] (pM) 

-5 40 
U).-
5 

20 

0 
p99a p 8 p l l  No pep. 

CDI + cd l  plate C D l  plate 
RMA-S 

Fig. 2. Peptide-specific recognition of mCDl + target cells by cytotoxic T cells. (A) Lysis of CDI - RMA-S 
and CDl - L target cells incubated with or without (-) peptide p99a and TL- (Tl8d) RMA-S with p99a. (B) 
Antibody inhibitionof CTL lysis of CDI - RMA-S targets loaded with p99a (16).The percentage of maimum 
lysis is shown, relativeto the value in the presence of p99a alone. Pre.,pre-bleed serum. (C)Specific peptide 
sequences are required for mCDl -restricted lysis.Shown is the lysis of mCDl - RMA-S cells pulsed with 10 
p.M p99a. 30 p.M p l l ,  or 30 p.M p18. No pep., no peptide. (D)Peptide inhibition of lysis by preincubation 
of mCDl + RMA-S cells with peptides p l  Ior p i 8  (30 pM) followed by pulsing with p99a (10 p.M) (E) 
Peptide anchor amino acids are important for mCD1-restricted recognition. We tested mCDl + RMA-S 
targets pulsed with the Ala-substituted peptides indicated. (F) interferon y (IFN-y) produced by T cells when 
stimulated with plate-bound mCDl in the presence or absence of p99a or with CDI + RMA-S cells pulsed 
with p99a, measured as units determined by enzyme-linked immunosorbent assay (28). 

tively little effect on peptide binding, con-
firming the importance of the rnotif we 
have identified. Because of a bias in the 
construction of the RPPDL, Gly occurred 
frequently at position 8 and is unlikely to be 
part of the motif. Indeed, Ala substitution 
at this position did not affect the binding 
affinity (Table 21, and nonconservative 
substitutions are tolerated in this position 
(Table 1) (8). The replacement of other 
aromatic amino acids (TrpH and Phe14) 
with Ala exerted only a minor influence, 
demonstrating that the presence of the mo-
tif is the critical component, rather than 
the overall hydrophobic character, in deter-
mining the affinity of a peptide for mCD1. 

To assess the immunological relevance 
of the CD1-peptide complexes, we raised T 
cell lines. This was done by immunizing 
mice with mouse RMA-S cells transfected 
with mCDl (15) that had been incubated 
with the mCD1-binding peptides p99a, 
p99a.-2.15, or p99 (16). T cell lines were 
isolated from lymph node-derived cells. 
The experiments shown below were done 
with a line raised to peptide p99a. 

Cytotoxic T cells recognized CD1-
RMA-S transfectants in the presence of the 
immunizing peptide but not if the peptide 
was omitted (Fig. 2A); likewise, RMA-S 
transfectants expressing the thymus leuke-
mia antigen (TL- RMA-S) incubated with 
the peptide were not recognized. Three dif-
ferent mCDl + transfectants-RMA-S T 
cells (H-2b),L cell fibroblasts (H-2k),and 
J774 macrophages (H-2") (17)-stimulated 
the T cells but only In the presence of the 
specific peptide. The mCD1-restricted cy-
totoxic T lymphocyte (CTL) activity was 
part~allyblocked (65% inhibition) by R377 
[a rabbit antiserum specific for rnCDl ( l a ) ]  
(Fig. 2B), probably a reflection of its poly-
clonality. The control, pre-bleed serum 
from the same rabbit did not block CTL 
effector activity nor did a monoclonal an-
tibody (mAb) specific for K"Dh or a control 
immunoglobulin G (IgG) rat antiserum. 
These results demonstrate an absolute re-
quirement for both p99a and CD1 by the 
CTLs and independence of any other MHC 
molecules. Peptide specificity was tested 
with two additional mCD1-binding pep-
tides. CDl+  RMA-S transfectants incubat-
ed with p l l  and p18 were weakly or not 
recognized at all (Fig. 2C). Furthermore, 
both peptides blocked the recognition of 
the reference p99a in a peptide inhibition 
assay (Fig. 2D). These data argue against 
CTL recognition of a conformational 
change of mCDl upon peptide binding. 
Rather, they suggest a more conventional 
model in which some amino acid side 
chains, such as the anchor motif, contribute 
to mCDl binding and others to T cell 
receptor (TCR) recognition. 

To test the importance of the anchor 
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residues in antigen recognition, we analyzed 
Ala mutants of p99 at anchor positions. 
T h e  full-length peptide p99 elicited a lytic 
activity similar to that of the immunizing 
p99a (Fig. 2A).  Ala-substituted peptides 
p99.Al and p99.A7, with highly impaired 
binding capacity to  mCD1, did not stimu-
late a cytotoxic response (Fig. 2E). Howev-
er, the double Ala-substituted peptide 
p99.AlA7 was recognized, in concordance 
with its higher affinity. In  summary, the 
ability of a synthetic peptide to  bind to  
soluble m C D l  correlated with its ability to 
stimulate mCD1-restricted T cells in vitro. 

In a cell-free system, soluble mCDl  
bound to  plates (19) was effective in sum-
ulating the T cell llne but only in the 
presence of peptlde (Fig. 2F). Furthermore, 
n o  difference in killing activitv was detect--
ed when peptide loading and C T L  assays 
were done in ser~un-free medium (17).  
These experiments suggest that processing 
of the 14-mer p99a is not required for T cell 
recognition and confirm that m C D l  is the 

u 

antigen-presenting molecule. 
T h e  origin and diversity of mCD1-reac-

tive T cells is unknown. Fluorescence-acti-
vated cell sorting analysis indicated that 
90% of the cells were a P T C R t  with n o  
detectable y6 population (17).  Ninety per-
cent of the cells were CD8aPtCD4- .  Con-
sistent with this, CTL lysis was able to  be 
inhibited by CD8 mAbs, but not  with CD4 
mAbs (Fig. 2B). T h e  mCIl1-restricted 
CTLs, therefore, had a conventional phe-
notype for class I-reactive cells from lymph 
node. However, m C D l  has recently been 
shown to  positively select and react with a 
set of C D 8  T cells with a n  invariant 
T C R a  chain (20) ,  suggesting that at  least 
two populations of mCD1-reactive T cells 
[nay exist. 

T h e  features of the mCD1-peptide inter-
action we describe closely match the char-
acteristics of peptide interactions with 
M H C  class I1 peptides. Similar to class I1 
peptides, m C D l  prefers long peptides (14, 
21) with hydrophobic and bulky amino ac-
ids at specific positions (9 ) ,  and the affinity 
of the interaction is similar to  that of nat-
urally processed peptides co-purified with 
class I1 molecules (KL,= 0.1 X 1OPi to  2.3 
X lo-' M )  (14). However, the m C D l  mo-
tif has three highly restricted anchors, mu-
tations of which greatly reduce peptide 
binding, a feature that more closely resem-
bles class I-peptide interactions (22). 
Mouse CD1 has a preference for peptides 
with hydrophobic residues, a feature shared 
by the molecular chaperone BiP and HMT-
M3 (8, 23, 24). However, BiP presents a 
generalized requirement for large hydropho-
bic residues at alternating positions with 
little specificity for particular amino acids. 
These common features suggest that a hy-
drophobic groove may be the basic opera-
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tional structure for ligand binding by MHC-
related proteins, where specificity is 
achieved bv ~ o c k e t swith chemical and , 

structural complementarity for the ligands. 
In contrast to our findings with mCD1, 
hCD1b has been shown to  present pro-
cessed mycolic acids to  T cells (6) .  These 
differences suggest that the various members 
of the heterogeneous CD1 family may have 
diverse functions that evolved for specific 
tasks, perhaps dedicated to  the presentation 
of antigens from a limited subset of patho-
gens. W e  cannot exclude that altered pep-
tides, for example modified with lipids, are 
the natural ligands for mCD1; however, the 
fact that mCDl  binds unmodified svnthetic 
peptides with a reasonable affinity clearly 
differentiates it from HMT-M3 (24). Al-
though our data do not exclude alternative 
fi~nctionsfor mCD1-for example, as a li-
gand for intact or denatured proteins in 
specific cellular compartments-they sup-
port the idea that mCD1 is an antigen-
presenting molecule that presents a unique 
set of peptides to T cells. 
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