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Diurnal Changes in the Partial Pressure of 
Carbon Dioxide in Coral Reef Water 

Hajime Kayanne,*t Atsushi Suzuki, Hiroshi Saito 

Coral reefs are considered to be a source of atmospheric carbon dioxide because of their 
high calcium carbonate production and low net primary production. This was tested by 
direct measurement of diurnal changes in the partial pressure of carbon dioxide (PCO2) in 
reef waters during two &day periods, one in March 1993 and one in March 1994, on 
Shiraho reef of the Ryukyu Islands, Japan. Although the PCO2 values in reef waters 
exhibited large diurnal changes ranging from 160 to 520 microatmospheres, they indicate 
that the reef flat area is a net sink for atmospheric carbon dioxide. This suggests that the 
net organic production rate of the reef community exceeded its calcium carbonate 
production rate during the observation periods. 

Photosynthetic organic production and 
calcium carbonate production occur simul- 
taneously in coral reefs at rates more than 
100 times those in the outer ocean (I) .  
Photosynthesis acts as a sink of atmospheric 
CO, (CO, + H 2 0  -+ CH,O + O,), where- 
as respiration releases the fixed CO,. Cal- 
cium carbonate production, on the other 
hand, raises Pro. in seawater (Ca2+ + 
2HC03- + c2b3 + H,O + CO,). It is 
thought that gross organic production in 
reefs is high, but net organic production is 
near zero, because the tropical ocean is 
typically depleted in nutrients to support 
net production. Therefore, coral reefs are 
thought to be a source of CO, to the atmo- 
sphere (2). One model proposes that the 
glacial-interglacial increase in atmospheric 
CO, levels resulted from the release of CO, 
that accompanies calcium carbonate depo- 
sition in reefs (3). . , 

Global productions of net organic car- 
bon and calcium carbonate in reefs have 
been roughly estimated at 20 x 10" g of C 
per year (4) and 11 1 x 1012 g of C per year 
( 5 ) ,  respectively, which supports the hy- 
pothesis that coral reefs are a net source 
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for atmospheric CO, (2). However, 
knowledge of the actual PCO2 changes that 
accompany reef productions has been un- 
certain and requires direct measurement of 
Pco2 changes in reef water (6). 

We have monitored the change in PCOZ 
of reef water over Shiraho coral reef on 
Ishigaki Island in the Ryukyus of Japan (Fig. 

Fii .  1. (A) Lccatbn of the study site and a 
transect across the reef liat perpendicular to 
the shoreline, and (B) an aerlal photo which 
shows the monitoring point (P), landforms, 
and benthic communities. The aerial photo 
was taken by the Geographical Survey Insti- 
tute. Reef landforms and communities can 
be identified by their odors: seagrass in 
black, sand and gravel in light blue, corals in 
brown, and algal turf and brown algae in 
light brown. White color to the south of 
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1A). Our measurements were made with a 
compact seawater PC?, measurement sys- 
tem with a nondis~erslve infrared eas ana- 
lyzer (NDIR) and'a membrane tlbe (7). 
The device is most effectively used in a 
shallow reef area, which is inaccessible to a 
large research vessel. We made measure- 
ments continuously for two three-day peri- 
ods, from 9 to 12 March 1993 (Fig. 2A) and 
from 13 to 17 March 1994 (Fig. 2B). In 
addition to reef water P o  we measured 

2' . 
the partial pressure of CO, m the atmo- 
sphere (pco2), light intensity, current direc- 
tion and speed, and water depth. Pcoz val- 
ues outside the reef were measured twice: at 
12:OO Japan time on 14 March 1994 and at 
0:00 Japan time on 16 March 1994. 

Shiraho is a typical fringing reef with a 
reef flat 850 m wide from the shore to the 
reef edge. This reef is known for its flour- 
ishing corals (Fig. 1B) (8). The seaward rise 
(reef crest) is exposed during low tides and 
separates water on the reef flat from the 
outer ocean. This situation is ideal for con- 
ducting a natural closed-field experiment. 
During these stagnant periods, the calcium 

- Land ---+ Reef flat +Reef 
Moat Reef crest front 

/ 

Shiraho reef shows reef rock covered with 
sand. The outer reef crest and reef rock are exposed at low tide I 
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carbonate ~roduction of coral communities 
has been estimated on the basis of changes 
in the measured alkalinity values in seawa- 
ter, and the organic production and respi- 
ration have been estimated on the basis of 
changes in the total CO, concentration 
computed from the measured alkalinity and 
Pco2 values. The water exchanges on every 
high tide with adjacent open-ocean water. 

We observed a diurnal Dattem of reef 
water Pco2, with a minimum of 157 patm 
during the day and a maximum of 521 patm 
during the night (9). The magnitude of the 
daytime decrease corresponds well with the 
light intensity. Table 1 shows the averaged 
light intensity and the averaged Pco, nor- 
malized at 23OC for each daytime and 
nighttime period. O n  16 March 1994, av- 

eraged light intensity was at its highest 
value (720 pmol mP2 s-') and daytime 
average Pco2 at its lowest value (242 patm) 
measured during the observation periods. 
The relation between the average values of 
PCo2 and those of light intensity (I) is rep- 
resented as PCo2 = 352 - 0.131, if we as- 
sume linearity. The mean light intensity 
in March for Ishigaki Island from meteoro- 
logical observations is 552 pmol mP2 s-' 
(10). The corresponding value of Pco2 
would be 279 patm. 

Atmospheric p a 2  was almost constant: 
348 ? 9 patm in 1993 and 348 ? 2 patm 
in 1994. Compared with the average day- 
time (279 patm) and nighttime (352 patm) 
Pco2 obtained from the above equation, 
this reef showed higher daytime CO, inva- 

Table 1. Relation between PCO2 and light intensity. Pm2 and light intensity are averaged for each daytime 
(D) and nighttime (N) period. Est~mated organic and carbonate productions during six stagnant periods 
(Dl to DIV, NI, and NII in Fig. 2) are also shown. 

Day of March 1993 Day of March 1994 

Parameter 9 10 11 13 14 15 16 
- - - - - - - 

D N D N D N N D N D N D N  

Averaged PCO2 319 327 336 367 270 365 411 322 385 302 377 242 255 
(patm) 

Averaged light 556 0 197 0 519 0 0111 0 137 0 720 0 
intensity 
(pmol m-2 s-I)' 

Stagnant period Dlt N l t  DII NII Dlll DIV 
Organic 11 -3 13 -5 9 16 

production 
(mmol C m-2 hour-') 

Carbonate 7 -1 4 1  5 3 
production 
(mmol C m-2 hour-l) 

*Micromoles of photosynthetically available radiation. tProductions were measured 400 m south of site P in Fig. 16. 

sion from air to sea (a difference of 69 
patm) than nighttime evasion (4 patm). 
To evaluate the function of reefs in the 
exchange of CO, between air and sea, we 
must compare the reef PCo2 with the off- 
shore value (322 patm at 23OC). The esti- 
mated mean daytime and nighttime reef 
water Pco, values were 43 patm lower and 
30 patm higher than the offshore value, 
res~ectivelv. which also indicates that the 
ree? serves 'is a sink of atmospheric CO,. 

The light-dependence of Pco2 changes 
implies that changes in CO, in the Shiraho 
reef water are caused primarily by the bal- 
ance of photosynthesis and respiration. To 
test this, we compared organic carbon and 
calcium carbonate productions with Pco2 
changes during six stagnant periods. During 
the four daytime stagnant periods (DI to 
DIV in Table I) ,  photosynthetic organic 
production (9 to 16 mmol of C per square 
meter per hour) exceeded the carbonate 
production (3 to 7 mmol C rn-, hour-'). 
Because the rate of ~hotosvnthesis exceeds 
that of calcium carbonate production by a 
factor of 1.6 or greater (Table l ) ,  the Pco2 
in reef waters decreased during the day- 
time. During the nighttime stagnant peri- 
ods (NI and NII in Table l), the CO, 
production by respiration (-3 and -5 mmol 
C rn-, hour-') was associated with minor 
carbonate production (- 1 and 1 mmol C 
- 

m hour-') and hence caused an increase 
in P a 2 .  

We estimated the daily calcium carbon- 
ate and photosynthetic organic productions 
by measuring pH and alkalinity change on 
Shiraho reef (1 1 ). The reef has a net organ- 
ic production of 110 mmol C mP2 dayp' 
(1.3 g C mP2 dayp1) and a net calcium 

Fig. 2. Changes in reef wa- A B 
ter PCO2 and atmospheric Day Night 
pco2 together with light in- 5~ 
tensity, current direction, 'i 
current speed, and water <2 i'OOO 

depth for the periods from Z 5 0- 
9to 12 March 1993(A)and 55 600. DI NI DII NII "I1' 

from13to17March1994 500. 
(B). The combined stan- 
dard uncertainties for the 5 400. 
PC02 values were ?I0 0" 
patm in 1993 and 2 5  C? 300: 
patm in 1994 (7). The 1994 
values were more precise 

zoo-. 
because we improved the 
stability of the measuring - - 
system. Two offshore PCO2 = - , * 

values at midday and at 5 
midnight were the same i--lOO - 

0:oo O:oo 0:oo (322 patm), which sug- March 9 March 10 March 11 
gests they were constant Japan time 9-12 March 1993 
as shown by the dashed 
line. The stagnant periods March 14 March 15 March 16 

are represented by shaded Jaoan time 13-1 7 March 1994 

vertical bars identified by changes in water depth and currents. The spikes of PCO2 just after the stagnation correspond with those of the currents from the mouth 
of the reef (M in Fig. 1 B). This flow pushes the water south of the station, where dense corals make the Pm2 change larger. MSL, mean sea level. Japan time 
is universal time plus 9 hours. 
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carbonate production of 100 ~ n ~ n o l  C ~ n - '  
day-' (1.2 g C m-' day- ')  in March 1993 
( 1 2 ) .  T h e  ratio of organic production to  
calcium carbonate nroduction is 1.1. T h e  
ratio was almost the  same in August 1992 
(1 .0) .  T h e  ratio of organic carbon produc- 
t ion to  calcium carbonate production re- 
quired to  maintain seawater PcO, at  a 
constant value of 350 pa tm has been cal- 
culated to  be 0.6 (2 ) .  W h e n  the  ratio 
exceeds these values, reefs serve as a sink 
of CO, 113). T h e  ratio for Shiraho reef , , 

excee& these threshold values, w111ch 1s 
consistent with our PcO, measurements. 

011 Moorea barrier reef, French Polyne- 
sla, C02  evasion from sea to air was ob- 
served a t  a backreef site, and it xvas con- 
cluded that reefs are a source of C02  (6 ) .  In  
contrast, at a reef front (corresponding to 
the reef crest in t h ~ s  study) slte, C02  flux 
fro111 air to sea xvas observed (14) .  These 
results suggest that different reef Tones act 
differently as to  CO' fluxes and that the  
highly productive zone such as the  reef 
front acts as a sink of CO,. 

A relatively loxv estimate of global reef 
net organic nroduction was based o n  a 
meall reef production rate of 0.1 g C m-' 
dayp1 (4 ) ,  xvhich in  turn was based primar- 
ilv on measurements from three atolls 115). 
1; that study, net production for the  \$hole 
reef xvas calculated from changes in  total 
carbon and alkalinity in enclosed lagoon 
water with a long residence time (50 days). 
Decomposition of organic rnatter predomi- 
nated in such lagoons, and thus, the  estl- 
mate ~ n i e h t  have been low. T h e  low esti- 
mate of net organic production is also based 
o n  underestimates of the  contribution of 
nitrogen fixation ( 4 ) ,  which provides nexv 
nutrients for net organic production in  the  
coral reef. Coral reefs, o n  the  other hand. 
are known to be active sites of nitrogen 
fixation ( I  6 ) .  Our  PC,, measurements and 
our estllnate of high net  organic production 
lnilicate that reefs might serve as a sink, not  
a source, for atmospheric C O L .  
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Flotation of Diamond in Mantle Melt at 
High Pressure 

Akio Suzuki, Eiji Ohtani, Takumi Kato 

Experiments show that diamond floats in a primitive mantle melt at around 20 gigapascals 
and 2360°C and in a melt f0rme.d by partial melting of the transition zone at about 16 
gigapascals and 2270°C. These observations constrain magma densities at high pres- 
sure. Diamond precipitated or trapped in a silicate melt at the base of the transition zone 
or the lower mantle floats and has been accumulating in the transition zone since early 
in Earth's history. Thus, the transition zone could be a reservoir of diamond. 

D e n s i t y  difference betxveen solid and liu- 
u ~ d  governs the  chemical differentiation In 
the  Earth's Interlor; in  particular, the  oli- 
vine-silicate melt density crossover at high 
pressure could produce serious influences 
(1 ,  2 ) .  Density meas~~rements  at high pres- 
sure and high temperature have suggested 
that olivine floats In komatiite and per~do-  
tite melts at denths below 250 km 13. 4 ) .  , ,  , 

However, the  existence of a density cross- 
over between olivine and a magma in the  
Earth is still uncertain because flotatio~l of 

nst~tute of Mineralogy. Petrology, and Economlc Geolo- 
gy, Totloku University. Senda~ 980, Japan. 

olivine 111 the euuilibr~um mantle melt has 
not yet been observed in the  experiments. 
Kitamura (5 )  suggested that diamond might 
float 111 mantle melt a t  111gh pressure and 
speculated that a diamond-rich layer m ~ g h t  
form during solidification of a terrestrial 
magma ocean. 

W e  conducted density measurements of 
peridotite melts at high pressure by s~nk-float 
experi~nents with diamond as a density 
marker. T h e  experi~nents were carried out in 
an  M A - h y p e  multianv~l apparatus (6).  
T h e  starting materials (Table 1 ) were sim- 
pl~fied compositions of primitive peridotite, 
PHN1611 (7), and the melt by partial melt- 
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