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Disruption of Retinal Axon Ingrowth by Ablation
of Embryonic Mouse Optic Chiasm Neurons

D. W. Sretavan*, E. Puré, M. W. Siegel, L. F. Reichardt

Mouse retinal ganglion cell axons growing from the eye encounter embryonic neurons at
the future site of the optic chiasm. After in vivo ablation of these chiasm neurons with a
monoclonal antibody and complement, retinal axons did not cross the midline and stalled
at approximately the entry site into the chiasm region. Thus, in the mouse, the presence
of early-generated neurons that reside at the site of the future chiasm is required for
formation of the optic chiasm by retinal ganglion cell axons.

During embryonic mammalian develop-
ment, retinal ganglion cell axons exit the
optic nerves to grow into the site of the
future ventral hypothalamus (I). There,
axons from the two eyes, upon leaving the
optic'nerves, turn within the neuroepithe-
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lium in a medio-posterior direction to
meet each other and lay down an
X-shaped pattern of intersecting retinal
axon pathways known as the optic chiasm.
Subsequently, retinal axons arriving later
undertake a second task in which axons
originating from the nasal retina project
across the midline to the opposite side of
the brain, whereas a group of axons from
the temporal retina turn away from the
chiasm midline to project toward ipsilat-
eral targets. Ipsilateral and contralateral
axon routing appear to involve interac-
tions of retinal growth cones with guid-
ance cues present in the neuroepithelial
environment of the optic chiasm (2).
Previous work has shown that the first
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retinal axons entering the ventral hypo-
thalamus encounter a population of early
generated neurons arranged as an inverted
V—shaped array pointing anteriorly at the
future site of the chiasm (3). These are
among the first neurons generated in the
embryonic mouse brain (4) and are already
present in the ventral hypothalamus at
embryonic day 11 (E11), 1.5 days before
the arrival of the first retinal axons (3).
Axons leaving the optic nerves make a
medio-posterior turn toward these embry-
onic chiasm neurons and their processes.
Upon reaching these neurons, retinal ax-
ons intermix with and run within the most
anterior elements of this array to cross the
midline to the other side. In this manner,
retinal axons from the two eyes cross over
each other to form the X-shaped optic
chiasm.

Chiasm neurons express cell surface
molecules capable of influencing retinal
axon growth. These include L1, a member
of the immunoglobulin (Ig) superfamily,
which has been shown to be a potent pro-
moter of retinal axon outgrowth in vitro (5)
and CD44, a transmembrane glycoprotein
known to bind components of the extracel-
lular matrix (6), which exerts a negative
influence on embryonic retinal axon out-
growth in vitro (3). These findings suggest
that these early-generated neurons may play
a role in the initial formation of the X-
shaped optic chiasm.

To determine whether these neurons
are involved in the establishment of the
optic chiasm in vivo, we used a monoclo-
nal antibody (mAb) to CD44 to direct
complement-mediated ablation of these
cells in E11 mouse embryos in utero before
the arrival of retinal axons at the ventral
hypothalamus. Embryos were then allowed
to develop in utero until E16, an age when
retinal axons have formed a well-defined
X-shaped optic chiasm in normal animals.

For neuronal ablation, a rat mAb that
recognizes mouse CD44 (7) was injected
with guinea pig complement into the lat-
eral and third ventricles of E11 mouse
embryos (n = 22) (8). Antibodies labeled
the CD44* chiasm neurons within 4 hours
(Fig. 1, B and D) (9). As described previ-
ously (3), labeled neurons were organized
in a layerlike fashion below the pial sur-
face of the ventral hypothalamus (arrow-
heads, Fig. 1D), forming a subset of the
cells present (Fig. 1E). Twenty-four hours
after ablation, very few CD44" chiasm
neurons could be visualized with antibody
to CD44 (Fig. 1F), although the overall
cell density in this region was not detect-
ably reduced (Fig. 1G). Dil(1,1’-dioctade-
cyl-3,3,3",3 ' -tetramethylindocarbocya-
nine perchlorate deposited at the ventral
hypothalamic midline in normal embryos
labels the axons of the CD44" chiasm



neurons that extend dorsally along the
lateral wall of the diencephalon (3). Dil
labeling at this site in treated embryos (n
= 3) (10) failed to result in similar axon
labeling, which is consistent with success-
ful ablation.

Injected embryos were allowed to con-
tinue development in utero until E16. In
normal E16 embryos, Dil crystals placed
into the optic disk regions of the retinas
heavily labeled the retinal projections,
showing clearly the optic nerves, the X-
shaped chiasm, and the two optic tracts
(Fig. 2A). Control embryos, injected on
E1l with either mAb alone (n = 5) (Fig.
2B) (11) or with complement alone (n = 4)
(10), revealed retinal projections indistin-
guishable from those in normal embryos
(12). In contrast, embryos in which chiasm
neurons had been ablated exhibited highly
abnormal projections at the ventral region
of the developing hypothalamus (Fig. 2, C
through F). Optic nerves appeared to be
similar in size to those present in normal
embryos. However, retinal axons in these
animals failed to extend beyond the approx-
imate junction of the optic nerves with the
future site of the optic chiasm (Fig. 2, C
through F). This position is approximately
where the earliest retinal axons would nor-
mally encounter embryonic chiasm neurons
(3). Figure 2 shows some variability in the
distance at which retinal axons stopped
from the midline (50 to 100 pm). Also note
a few axons crossing the midline in Fig. 2E.
Nevertheless, in all cases, retinal axons en-
tering the region at E16 failed to form an
X-shaped optic chiasm and optic tracts.

Light microscopic analysis of mAb com-
plement—treated embryos at E16 showed
that cells remaining in the region were
normal in morphological appearance (Fig.
3B). Electron microscopic analysis (13)
showed that the region was free of debris or
cellular infiltrate (Fig. 3D), and there was
no apparent tissue scarring that may have
impeded axonal growth. Consistent with
this observation, developing neocortical tis-
sue has been transplanted (14), and embry-
onic cortical subplate neurons ablated
chemically (15), without scarring or dam-
age to remaining cells. Ultrastructural ex-
amination also confirmed the lack of a sig-
nificant projection crossing the ventral
midline (Fig. 3D).

To provide further evidence for specific-
ity, experiments were carried out in living
E12 retina-chiasm preparations in which
the retinas were isolated together with the
optic nerves and the part of the developing
brain giving rise to the optic chiasm (16).
To assess whether general damage to the
neuroepithelium can lead to the arrest of
retinal axon ingrowth, glass micropipettes
were used to puncture the neuroepithelium
at the junction of the optic stalks and the

Fig. 1. Embryonic tissue sections showing anti-CD44 and 4',6'-diamidino-2-phenylindole (DAPI) cell
staining at the ventral hypothalamus. (A) Schematic diagram of the retinas, optic nerves, and future
region of the optic chiasm in an E12 mouse embryo. A, anterior. The dotted rectangle depicts the
horizontal plane of section and delineates the approximate areas shown in Fig. 2, B and C. The solid
rectangle represents the coronal plane of section shown in (D) through (G). (B) Horizontal section
through an E11 embryo showing the inverted V array of CD44* neurons after intraventricular injection
of antibody to CD44, visualized with a fluorescein isothiocyanate (FITC) secondary antibody. (C)
Horizontal section through the ventral hypothalamus of an E11 embryo that did not receive antibody
to CD44 but was stained with FITC secondary antibody. (B) and (C) are at the same magnification.
Scale bar in (C), 100 um. (D and E) A coronal section through the ventral hypothalamic region of an
E12 embryo after injection of antibody to CD44 at E11 and double-labeled with antibody to CD44 (D)
and DAPI (E). CD44 immunoreactive chiasm neurons (arrowheads) were found immediately adjacent
to the ventral pial surface and represented a subset of the cells in this region. D, dorsal. (F and G) A
coronal section through the ventral hypothalamic region of an E12 embryo after injection of antibody
to CD44 and complement at E11. This section was double-labeled with antibody to CD44 (F) and DAPI
for cell nuclei staining (G). Anti-CD44 immunoreactivity was virtually absent. DAPI staining showed that
this region appeared normal in cell size and cell density. D, dorsal. (D) through (G) are at the same
magnification. Scale bar in (F), 100 pm.
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Fig. 2. Dil-labeled retinal axon
projections in E16 embryos. (A)
Retinal axon projections in a nor-
mal mouse embryo. (B) Retinal
projections in a control embryo
that was injected in utero at E11
with mAb to CD44 alone. (C
through F) Retinal projections in
embryos that received mAb to
CD44 and complement injections
at E11. The optic nerves ap-
peared normal but the retinal ax-
ons failed to form an optic chi-
asm. Scale bar, 200 pm.
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ventral hypothalamus before the ingrowth
of retinal axons (Fig. 4, A and B), and
thodamine-labeled microspheres were used
to mark the sites. After culture for 48 to 72
hours, tissue preparations (n = 8) were
fixed and 3,3’-dioctadecyloxacarbocyanine
perchlorate (DiO) was applied at the optic

disks to label the retinal projections (Fig. 4,
D and E). Results showed that retinal axons
grew from the optic nerves into the ventral
hypothalamus along routes similar to those
in control preparations (Fig. 4C) and in
vivo (17), growing through the sites marked
by beads. In fact, axons crossed the midline

"'“""f o

Fig. 3. Sections of the E16 ventral hypothalamus. (A and B) Plastic-embedded, hematoxylin-stained coronal

sections of a normal embryo (A) and an embryo that received antibody to CD44 and complement at E11 (B).
(C and D) Electron micrographs of the midline region from a normal (C) and a mAb- and complement-treated
embryo (D). Ax, axon; g, radial glia-like cells. Scale bar in (A) and (B), 50 pm; in (C) and (D), 2 pm.

Fig. 4. Axonal growth in in vitro retina-chiasm whole mount prepa- A

rations. (A) Schematic diagram showing the cell bodies of CD44*
neurons as open circles. The location of micropipette punctures at
approximately the entry site of the optic nerve into the optic chiasm
region on each side is indicated by an asterisk. A, anterior. (B) An E12
embryo whole mount showing the retinal axon projections at the
start of the in vitro culture period. DiO crystals were used to label both
optic disks, and rhodamine latex beads were injected to mark mi-
cropipette puncture sites. At this age, no retinal axons have reached
the ventral hypothalamus. The DiO-labeled elements marked by the
arrow are most likely axons of passage near the eye region. A,
anterior. (C) Preparation from an E12 embryo maintained in culture
for 48 hours. Axons from both retinas have entered the ventral
hypothalamus region and have begun to make an optic chiasm-like
structure. (D) A whole mount from an E12 embryo subjected to
micropipette-induced damage (at sites marked by rhodamine-la-
beled beads) and subsequently maintained for 2 days in vitro. DIO
labeling revealed that embryonic retinal axons have entered the ven-
tral hypothalamus. (E) A second example of a whole mount prepa-
ration from an E12 embryo maintained for 2 days in vitro. In this
experiment, an extensive series of micropipette punctures (marked
by three separate sites of bead labeling) were made in the right side
of the preparation. DiO-labeled retinal axons have still grown into the
future region of the optic chiasm. Scale bar in (B), 400 um.
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and began to form an optic chiasm-like
structure. Thus, simple tissue damage is ap-
parently rapidly healed, and nonspecific
disruption of neuroepithelial cell popula-
tions in the ventral diencephalon does not
lead to the stalling of retinal axon growth.

Previously, we found that CD44 in vitro
can exert an inhibitory influence on embry-
onic retinal axon outgrowth (3). If CD44 in
vivo functions in a similar manner, the
inverted V array of CD44" neurons may
serve two developmental roles. First, they
facilitate ingrowth of the earliest retinal
axons into the developing optic chiasm.
Second, they may also deflect retinal axon
growth laterally into the optic tracts.
Guidepost neurons during grasshopper limb
bud development (18) and subplate neu-
rons in the developing mammalian neocor-
tex (15) are specialized early generated neu-
rons that provide guidance cues for forma-
tion of axon pathways. Our results demon-
strate that CD44* neurons are critical for
retinal axon ingrowth into the mammalian
ventral hypothalamus and suggest that they
may guide retinal axons as they leave the
optic nerves to enter the brain. By analogy
with grasshopper guidepost neurons and
mammalian subplate neurons, this guidance
may result from direct interactions between
retinal axons and CD44 " chiasm neurons.
However, we currently cannot rule out the
possibility of indirect effects.

The arrest of retinal axons after ablation
of embryonic chiasm neurons is reminiscent
of mutations in Drosophila in which axons




arrest at positions corresponding to path-
finding sites characterized by a change in
the cellular environment (19). The results
are also remarkably similar to the pheno-
type of GAP-43 null mutant mice in which
embryonic retinal axons stall at the ventral
hypothalamus without forming an optic
chiasm (20).

Our experiments do not address the
eventual fate of stalled retinal axons. These
axons may remain at the ventral hypothal-
amus indefinitely, be subsequently elimi-
nated because of a failure to reach their
targets, or eventually continue into the
brain by normal or alternate routes. In the
achiasmatic mutation in adult dogs, retinal
axons from the two eyes approach, but do
not cross the midline to form an X-shaped
optic chiasm. Instead, retinal axons project
exclusively into the ipsilateral side (21).
We do not know whether retinal axons in
mouse embryos with ablated CD44™ neu-
rons, like retinal axons in these mutant
dogs, eventually find their way to ipsilateral
targets. Likewise, it is not known if embry-
onic CD44™" chiasm neurons are affected in
achiasmatic dogs. Nevertheless, the failure
of retinal axons to form a normal optic
chiasm in both the achiasmatic dogs and
the mouse embryos with ablated CD44%
neurons suggest that retinal axon ingrowth
and crossing at the ventral hypothalamic
midline in mammals involve pathfinding
mechanisms distinct from those that medi-
ate retinal axon growth within the optic
nerves and tracts. One cellular element in-
volved in the initial formation of the X-
shaped optic chiasm appears to be early
generated CD44 " chiasm neurons.
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