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In V~VO Transfer of GPI-Linked Complement activated c 3  ( c3b)  associated with factor B 
and activated C4 (C4b) associated with C2] 

Restriction Factors from Erythrocytes or dissociates the convertases once thev are 

to the Endothelium 
D. L. Kooyman,* G. W. Byrne, S. McClellan, D. Nielsen, 
M. Tone, H. Waldmann, T. M. Coffman, K. R. McCurry, 

J. L. Platt, J. S. Logan 

Many proteins are associated with the outer layer of the cell membrane through a 
posttranslationally added glycosyl phosphatidylinositol (GPI) anchor. The functional sig- 
nificance of this type of protein linkage is unclear, although it results in increased lateral 
mobility, sorting to the apical surface of the cell, reinsertion into cell membranes, and 
possibly cell signaling. Here evidence is presented that GPI-linked proteins can undergo 
intermembrane transfer in vivo. GPI-linked proteins expressed on the surface of trans- 
genic mouse red blood cells were transferred in a functional form to endothelial cells in 
vivo. This feature of GPI linkage may be potentially useful for the delivery of therapeutic 
proteins to vascular endothelium. 

formed (5). CD59 is a -19-kD GPI-an- 
chored glvco~rotein that binds to C8 and - ,  
C9 of the assembling membrane attack 
complex (MAC), blocking both comple- 
ment pathways at the terminal stage (6-8). 

High level tissue-specific expression of 
human globin genes can be readily obtained 
in transgenic mice (9, 10). We deslgned 
two expression constructs, #506 and e463 
( I  1 ), that contain sequences encoding DAF 
and CD59 linked to the regulatory sequenc- 
es of the globin gene (Fig. 1). Transgenic 
mice were produced from these constructs 
and bred to generate transgenic offspring for 
analysis. 

The expression of human CD59 and 
DAF protein was detected on red blood 
cells (RBCs) of *506 transgenic mice by 
quantitative flow cytometry with appropri- 

Proteins can be anchored to cell mem- Because GPI-anchored ~roteins are ate lnonoclonal antibodies i 12). We detect- 
branes through the posttranslational at- 
tachment of a covalently linked glycosy- 
lated form of phosphatidylinositol. Proteins 
with GPI anchors exhibit a diversity of 
activities including colnplement regulation 
[for example, human decay accelerating fac- 
tor (DAF) and human CD591, cell interac- 
tion (for example, lymphocyte functional 
antigen-?), and enzymatic activity (for ex- 
ample, alkaline phosphatase and acetylcho- 
linesterase) (1 ). Proteins with a GPI tail are 
characterized by diffusion coefficients great- 
er than most transmembrane proteins (2) 
and apical cell surface expression (3). Fur- 
thermore. DAF and GPI-linked T cell 
marker protein (Thyl) ,  after isolation from 
a cell membrane, can reinsert into heterol- 
oeous cell membranes in vitro and retain 

broadly distributed and are easily extracted 
from and reinserted into cell membranes, 
we hypothesized that a GPI anchor might 
enable in vivo protein transfer from one cell 
to another under physiological conditions. 
To test this hypothesis we made transgenic 
mice that expressed two GPI-anchored 
complement restriction factors (CRFs), 
CD59 and DAF, in an erythroid-specific 
manner and then assayed for their presence 
on endothelial cells (ECs). Both of these 
glycoproteins regulate complement activa- 
tion and are thought to protect against 
homologous lysis. DAF is a -70-kD GPI- 
anchored glycoprotein that prevents the 
formation of C3 convertases [for example, 

ed approximately 40,000 molecules of 
CD59 per RBC, about two times the 
amount found on human RBCs. DAF ex- 
pression on the transgenic RBCs more 
closely resembled that observed on human 
RBCs (estimated to be about 3000 mole- 
cules per RBC). Similar amounts of expres- 
sion were detected with both constructs. 
Transgenic RBCs were resistant to lysis by 
human complement, indicating that the 
proteins were functional. No deleterious ef- 
fects of the CRF expression were detected 
in the transgenic mice even after multiple 
generations of breeding. 

We examined the cellular distribution of 
these proteins in various tissues by immu- 

" 
biological function (4) .  Fig. 1. Constructs used r) r) 

to make transgenc mce. #4631 LCR k W C D 5 9  DAF 

D L. Kooyman, G W. Byrne, S. McClelan, D. N~elsen, J In construct 11463, the a-globin gene a-globin gene 
S. Logan, Nextran, 3038 College Road East, Princeton, cDNAs for CD59 and DAF 
NJ 08540, USA. were lnserted into the flrst 
M. Tone and H. Waldmann, Sir W~Ilam Dunn School of exon of the  human  a.glo. 
Pathology, South Parks Road, Oxford OX1 3RE, UK. 
T. M Coffman, Duke Unversity Medcal Center, 508 Ful- bin gene, and the ATG #'06 

ton Street. Durham. NC 27705, USA codon used for the syn- a-globin gene &, P-globin gene - 
K. R. McCurry and J. L. Platt, Departments of Surgery, thesls of a-globin protein 
Pediatrics, and Immunology, MSRB, Duke Un~vers~ty was s~multaneously removed (1 I ) .  For construct #506, the DAF cDNA was inserted Into the ATG start ste 
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nohistology with monoclonal antibodies 
(1 3). Both CD59 and DAF were detected 
on vascular endothelial and hematopoietic 

Fig. 2. lmmunohistology from mouse heart. Sam- 
ples were frozen, cryosectioned, and stained with 
monoclonal antibodies (13). Heart tissue from (A) 
nontransgenic and (C) #463 transgenic mice was 
stained for CD59. (B) Heart tissue stained for CD59 
taken from a nontransgenic mouse containing re- 
constituted bone marrow from a transgenic mouse 
donor after a successful bone marrow transplant. (D) 
Heart tissue from #506 transgenic mice stained for 
DAF. (A) and (B) were photographed at low magnifi- 
cation (oliginal magnification, x200) to demonstrate 
overall staining patterns; (C) and (D), photographed 
at high magnification (original magnification, x400), 
demonstrate CD59 and DAF staining associated 
with vascular endothdium. Transgenic and non- 
transgenic mouse heart tissues were stained for hu- 
man iC3b and MAC after the hearts were perfused 
with 50% human plasma in a modified Langendorf 
perfusion system (21). The presence of iC3b and 
MAC was used as a marker to indicate complement 
activity (26). No human iC3b or MAC was observed 
on heart tissue from transgenic mice, (E) and (G), 
respectively, but both were detected on the vascular 
endothelium of nontransgenic mouse hearts after 
perfusion with human serum, (F) and (H), respective- 
ly. Original magnification for (E) to (H), x400. 

cells in all of the tissues examined: heart, 
kidney, liver, spleen, and lung (Table 1 and 
Fig. 2). Globin gene expression controlled 
by the human P-globin locus control region 
(LCR) in transgenic animals is restricted to 
the erythroid lineage (9, 10, 14). Northern 
analysis of RNA from various tissues con- 

Table 1. Expression patterns of CD59 and DAF in 
ECs from transgenic animals. Tissue samples 
were frozen, cryosectioned, and stained for CD59 
and DAF as described (13). Relative fluorescence 
intensity was assessed at the time of blinded mi- 
croscopic examination and assessed by an arbi- 
trary scale (JLPlatt) from 1 to 4 (background is 0). 
Under these conditions, equivalent human tissue 
expression is 2 for CD59 and 1 for DAF. Expres- 
sion levels of CD59 were similar in #463 and #506 
animals, and DAF expression was slightly higher in 
#506 animals. 

Fluorescence intensity 
Tissue 

CD59 DAF 

Heart 
Kidney 
Lung 
Spleen 
Liver 

Heart 
Kidney 
Lung 
Spleen 
Liver 

Construct #463 

Construct #506 

firmed this observation (15). However, to 
conclusively demonstrate that CRF:globin 
chimeric genes are not expressed in ECs 
and that the presence of CRF proteins on 
ECs resulted from intermembrane transfer, 
we conducted further experiments. 

We examined ECs for expression of 
CD59 and factor VIII (an endothelial cell 
marker) by dual-label flow cytometry imme- 
diately on isolation and after culture in 
vitro (16) for five passages (-28 days). ECs 
were analyzed from control mice and trans- 
genic mice expressing construct #506 and 
two other constructs, #412 and #528, which 
express CRFs directly in ECs (17). Factor 
VIII expression was observed in all ECs; 
however, only ECs from mice expressing 
constructs #412 and #528 had a population 
of cells that expressed both CD59 and fac- 
tor VIII after culture (Fig. 3). Similar levels 
of CD59 expression were observed on #506 
and #528 transgenic ECs at the time of 
isolation (18), consistent with a similar lev- 
el of endothelial staining of the constructs 
by immunohistology. The absence of CD59 
on endothelial cells after culture from ani- 
mals expressing construct #506 indicates 
that LCR-globin-directed expression of 
CD59 was not occurring in ECs. Thus, 
complement regulatory antigens detected 
on vascular endothelium appeared to be 
transferred from RBCs to ECs. 

The ECs were analyzed directly for RNA 
expression by reverse transcription and 
polymerase chain reaction amplification 
(RT-PCR) followed by Southern (DNA) 
blot analysis with a CD59 probe (19). ECs 

Fig. 3. Dual-cdor flow cytometry and AT-PCR analysis of cultured E 
mouse ECs. Fat pad ECs were extracted from transgenic and nontrans- 1 2 3 4 6 6 
genic mice (76) and cultured for five passages (-28 days) before anal- 
ysis.Cellswereanalyzedbyclual-cdorRowcytometrytoassessthe 
premce of CD59 and factor Vlll on the cell surface. Factor Vlll was 
used to confirm that the cells were endothekial. The ECs were obtained 
from transgenic mice that expressed CD59 either in an erythroid-spe- bp 
c& manner (#506) or directly in ECs (MI 2 and #528). As Indited in -801 

(A) and (B), ECs derived from animals expressing construct #506 were 
essentially identical to those from nontransgenic animals. The ECs -420 
derived from animals expmssing construct #412 (C) or #528 (D) were 
positive for both factor Vlll and CD59. (I!) A RT-PCR assay was used to 
analyze RNA expressior~ in ECs frcxn a nontransgenic mouse and trans- 
genic mice from the same constructs used in dual-color Row cytomeby. The sensitivity was maximized by 
transferring the RT-PCR gel by Southern blot and hybridizing it with a 32P-labeled CD59 cDNA probe. An 
appropriately sized CD59 PCR product (19) was detected from the EC RNA of #412 and W528 transgenic 
mice (lanes 1 and 2, respectively). No CD59 PCR products were detected in RNA from #506 transgenic 
mice (lane 3) or n o m i c  mice (lane 4). Lanes 5 and 6 are RT-PCR resub from Me-blood RNA 
extracted from a BMT donor line mouse (lane 5) and a nontmqmk BMT recipient mouse (lane 6). 
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were extracted from transgenic mice ex
pressing constructs #506, #412, and #528 
and a nontransgenic mouse, and then the 
ECs were cultured for five passages (—28 
days) before RNA extraction. The CD59 
PCR product was detected only in ECs from 
animals containing constructs #412 and 
#528 (Fig. 3). No CD59 PCR product was 
detected in ECs from transgenic animals 
expressing construct #506 or from non
transgenic mice. 

We performed bone marrow transplants 
to conclusively show that the transgene-
expressed CD59 could transfer from RBCs 
to ECs. Bone marrow-derived cells from a 
line of transgenic mice expressing CD59 
from the globin promoter were transplant
ed into normal mice of similar genetic 
background (20). After myeloablation, 3 
out of 20 nontransgenic mice were rescued 
with bone marrow from transgenic mice. 
Flow cytometric analysis of whole blood 
from bone marrow recipient mice demon
strated the presence of human CD59 on 
RBCs. Analysis of whole-blood mRNA 
from one bone marrow transplant (BMT) 
recipient and donor by RT-PCR con
firmed the success of the transplant (Fig. 
3). Immunohistological analysis of heart 
tissue in the BMT recipients demonstrated 
the presence of CD59 antigen on vascular 
endothelium. Specific staining for CD59 
was observed in the heart of a BMT recip
ient, but not in the sample from a non
transgenic animal (Fig. 3). 

We detected the transfer of these pro
teins by staining tissue sections with mono
clonal antibodies. It is possible that staining 
could result from transfer of an epitope and 
not from transfer of the intact functional 
molecules. To rule out this possibility, we 
assayed for the function of these proteins in 
cardiac endothelium. We used a modified 
Langendorf heart preparation (21) and per
fused the mouse hearts with human plasma. 
To facilitate perfusion of the organ, we ini
tially perfused the hearts with oxygenated 
Iscove's modified Dulbecco's medium 
(IMDM) for 30 min before perfusion with 
IMDM supplemented with human plasma. 
The hearts were perfused with 50% human 
plasma for 60 min. Under these conditions 
antibodies present in human plasma bind to 
ECs of the mouse heart and activate com
plement. If CD59 and DAF are active, this 
process should be inhibited. These mole
cules function to inhibit complement intrin
sically on the surface of the cell (5, 22). 
DAF activity was assessed by monitoring the 
amount of iC3b (a product of C3 indicative 
of C3 convertase activity). We measured 
formation of the MAC to assess the biolog
ical activity of CD59. The MAC and iC3b 
were not detected in hearts taken from mice 
transgenic for both CD59 and DAF (Fig. 2). 
Heavy deposition of iC3b and MAC was 

observed in the hearts of nontransgenic 
mice. This demonstrates that both CD59 
and DAF antigens are transferred in vivo to 
the vascular endothelium as functional com
plement-inhibiting proteins. 

We have demonstrated that proteins 
containing a GPI linkage can transfer be
tween membranes of cells in vivo. The 
functional significance of this process is 
unknown. However, in the case of GPI-
anchored proteins such as DAF and CD59 
that are involved in the inhibition of com
plement activation on host surfaces, trans
fer onto ECs may help maintain vascular 
integrity. For example, CD59 and DAF may 
be lost from the endothelial cell as a result 
of complement activation, as may occur 
during transient ischemia (23), after which 
these proteins could transfer from RBCs to 
the ECs. In this way the RBCs might serve 
as a reservoir. Transfer might ensure an 
even distribution of these proteins to confer 
complete protection of the vasculature. If 
transfer is a passive process, a gradient may 
actually occur favoring transfer from RBCs 
to ECs given the high concentration of 
RBCs in blood (approximately 1 X 109 

RBCs per milliliter). Isolated CD59 will 
transfer to human ECs and rabbit RBCs in 
vitro using high-density lipoprotein as a 
carrier (23). Similar mechanisms of transfer 
may be involved in vivo. Variant surface 
glycoprotein, a GPI-anchored protein on 
trypanosomes, can transfer to RBCs in vitro 
(24), and human DAF can be incorporated 
into trypanosomes in vivo (25). It is not 
known if transfer is restricted to CD59 and 
DAF or a property of all GPI-linked pro
teins. The significance of CD59 and DAF 
transfer in understanding certain disease 
states, infections, and cell-cell interactions 
is yet to be elucidated as are the applica
tions of such a system for delivering specific 
proteins to the endothelium of transgenic 
animals or in gene therapy. 
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HERG, a Human Inward Rectifier in the 
Voltage-Gated Potassium Channel Family 

Matthew C. Trudeau, Jeffrey W. Warmke,* Barry Ganetzky, 
Gail A. Robertson? 

In contrast to other members of the Eag family of voltage-gated, outwardly rectifying 
potassium channels, the human eag-related gene (HERG) has now been shown to encode 
an inwardly rectifying potassium channel. The properties of HERG channels are consistent 
with the gating properties of Eag-related and other outwardly rectifying, S4-containing 
potassium channels, but with the addition of an inactivation mechanism that attenuates 
potassium efflux during depolarization. Because mutations in HERG cause a form of 
long-QT syndrome, these properties of HERG channel function may be critical to the 
maintenance of normal cardiac rhythmicity. 

T h e  ether-h-go-go (eag) gene was originally 
identified in Drosophila on the basis of its 
leg-shaking mutant phenotype (1 ), attribut- 
ed to an increase in neuronal excitability and 
transmitter release at the neuromuscular 
junction (2). The polypeptide predicted by 
the sequence of the cloned gene exhibits the 
characteristic features of K+ channels ( 3 ) ,  
and exmession studies in froe oocvtes con- - ,  
firm that eag encodes a functional K+  chan- 
nel (4, 5). The eag locus defines an extended 
gene family, with members falling into sub- 
families on the basis of their sequence simi- 
larity: Eag, named for the original isolate 

from Drosophila; Elk, for eag-like Kt  channel; 
and Erg, for eag-related gene (6). Both eag 
and M-EAG, its mouse counterpart, encode 
voltage-gated, outwardly rectifying K+ chan- 
nels (4, 5). We report here that HERG, a 
gene in the Ere subfalnilv isolated from hu- - " 
Inan hippocampus (6), encodes a Kt  chan- 
nel with inwardly rectifying properties in 
spite of the extensive homology with the 
outwardly rectifying members of the Eag 
family (49% amino acid identity) (7). 

Inward rectifiers are a large class of K+-  
selective ion channels that preferentially 
conduct inward Kt  currents at voltaees 
negative to the Kt  equilibrium potential 
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to the cardiac inward rectifier IK1, the "de- 
layed rectifier" IKr, which contributes sub- 
stantially to the repolarization of the action 
potential, also exhibits profound inward 
rectification (9). Recent molecular charac- 
terization of inward rectifiers has focused on 
a family of channels sharing a hydropathy 
profile that predicts two transmembrane do- 
mains ( lo ) ,  in contrast to the six putative 
transmembrane domains in %-containing 
channels of the Shaker (Sh) (1 I ) ,  Slow- 
poke (Slo) ( 12) ,  and Eag (6) families. 

We generated an expression construct for 
heterologous expression of HERG in frog 
oocytes from overlapping complementary 
DNAs (cDNAs) and a genomic fragment 
previously isolated from human DNA librar- 
ies (13, 14). A small inward current was 
sometimes seen after repolarization from a 
series of voltage steps (Fig. 1A). By compar- 
ison, oocytes expressing M-EAG have large 
outward currents under the same conditions 
(Fig. 1C). When oocytes injected with 
HERG cRNA were presented with hyperpo- 
larizing voltage steps from 60 mV in elevated 
external Kt  concentration ([KIo), large in- 
ward currents were observed (Fig. 1, D and 
E). HERG currents rapidly turned on and 
then declined with rates that were voltage- 
dependent. Currents evoked by stepping to 
- 105 mV had a time-to-peak of 27 ? 4.6 Ins 
(mean + SD; n = 7). Current deactivation 
could be fitted with a biexponential function 
with time constants of 68.2 + 6.6 Ins and 
292 + 20.4 ms (mean ? SD; n = 6). The 
voltage range of activation of the inward 
HERG current shifted as [KIo was altered 
(Fig. 2A), as for inward rectifiers, with a 
Nernstian relation indicating K+  selectivity 
(Fig. 2B). 
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