
aminilnide inhibitor was able to make near- 
ly all the interactions with the enzyme that 
corresponding dipeptide inhibitors make. 
Although the alninimide contains an extra 
backbone a t a n  relative to conventional 
amino acids, the carbonyl groups of the 
peptidornimetic make the same hydrogen 
bonds, and the side chains of the aminirnide 
dipept~de analog bind to the same subsites 
on the enzyme. 
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Rational Design of Peptide Antibiotics by 
Targeted Replacement of Bacterial and 

Fungal Domains 
Torsten Stachelhaus, Axel Schneider, Mohamed A. Marahiel* 

Peptide synthetases involved in the nonribosomal synthesis of peptide secondary me- 
tabolites possess a highly conserved domain structure. The arrangement of these do- 
mains within the multifunctional enzymes determines the number and order of the amino 
acid constituents of the peptide product. A general approach has been developed for 
targeted substitution of amino acid-activating domains within the srfA operon, which 
encodes the protein templates for the synthesis of the lipopeptide antibiotic surfactin in 
Bacillus subtilis. Exchange of domain-coding regions of bacterial and fungal origin led to 
the construction of hybrid genes that encoded peptide synthetases with altered amino 
acid specificities and the production of peptides with modified amino acid sequences. 

Peptide secondary metabolites produced by 
microoganislns exhibit diversity with respect 
to chemical structure and biological activity. 
These metabolites include antibiotics, en- 
zyme inhibitors, plant and animal toxins, 
and immunosuppressants and therefore are 
of importance to medicine, agriculture, and 
biological research (1). Two rnechanisrns of 
amino acid incorporation into the bioactive 
peptides have been identified. The  multicy- 
clic lantibiotics, for example, are synthesized 
ribosornally from gene-encoded peptide pre- 
cursors, which are extensively modified by 
complex posttranslational processing (1). 
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Marburg, D-35032 Marburg, Germany. 
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Other peptides are synthesized on protein 
templates by a nonribosomal mechanism. 
This group contributes to the structural di- 
versity of peptide secondary metabolites. 
These peptides may be composed of linear, 
cyclic, or branched peptide chains and may 
contain D-, hydroxy-, or N-methylated ami- 
no acids that may be modified by acylation 
or glycosylation (1 , 2). 

Common to these peptides is their mode 
of synthesis by lnultifunctional enzymes that 
use a thioternplate lnechallisln and differ in 
substrate specificity and size (2-6). Distinct 
dolnains represent the functional building 
units of these ~nultifunctional enzymes that 
are responsible for specific arnino acid acti- 
vation (including adenylation and thioester 
formation), modification, and peptide bond 
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formation (Fig. 1) (1 -7). This type of build- 
ing block arrangement implies that a syn- 
thetase that contains the appropriate num- 
ber of activating units in the correct order 
could synthesize any defined peptide. 

Sequence analysis of many bacterial and 
fungal genes encoding peptide synthetases 
has shown the presence of distinct and ho- 
mologous domains (Fig. 1A) (3). Essential 
for the design of new, more efficient or less 
toxic peptides was the identification of func- 
tional modules involved in substrate activa- 
tion as targets for directed modification and 
alteration of substrate specificity. Recent 
biochemical and genetic studies have delin- 
eated the minimal size of a domain and have 
defined the location of integral functional 
modules (Fig. 1A) (7). These findings made 
possible the amplification of specific do- 
main-coding regions, responsible for amino 
acid recognition and activation, from a di- 
verse group of bacterial and fungal genes 
encoding peptide synthetases. 

Here, we used amplified domains (Table 
1) to make specific changes within the srfA 
operon responsible for the biosynthesis of 
the lipopeptide antibiotic surfactin in B. 
subtilis (5). For the creation of hybrid genes, 
we amplified by polymerase chain reaction 
(PCR) the coding regions of the Phe-, 
Om-, and Leu-activating domains of the grs 
operon from Bacillus brevis (3) and the Cys 
and Val domain of the acvA gene from 
Penicillium chrysogenum (6) ( Table 1) (8). 
By cloning these domain-coding regions of 
bacterial and fungal origin between the 
linkers of the integration vector pJLA;S1- 
3'-SRF (Fig. 2, A and B) (9, lo), we con- 
structed gene fusion proteins encoding 
SrfA-C derivatives whose altered amino 
acid specificities were determined by the 
substituted domains (Fig. 2B). The derived 
fusion proteins are under the control of a 
heat-inducible promoter and were ex- 
pressed in Escherichia coli. In agreement 
with results obtained with the wild-type 
enzyme, these studies revealed recombinant 
proteins of about 145 kD (5), which were 
detected in protein immunoblots (Fig. 2C). 

The srfA-C-directed reprogramming of 
the srfA operon in the chromosome of B. 
subtilis was accomplished by gene disruption 
and replacement, as monitored by a select- 
able marker. This approach involves two 
successive steps: marking the chromosomal 
target site (Leu domain of srfA-C) (Figs. 1 
and 3) with the selectable gene by double 
cross-over and delivering an engineered hy- 
brid gene into the marked chromosome by 
marker exchange. First, the constructed plas- 
mid pSRF-ALeu (Fig. 2B) (9, 10) was trans- 
formed into the surfactin producer strain B. 
subtilis [American Type Culture Collection 
(ATCC) number 213321 (1 1). Southem 
(DNA) blots revealed that several chloram- 
phenicol-resistant (CmR) clones that did not 

Fig. 1. Multidomain structure of peptide synthetases. (A) Schematic diagram of the highly conserved and 
ordered domain organization of peptide synthetases encoded by the bacterial operons grs (row 1) and 
srfA (row 2), and the fungal gene acvA (row 3) [aad, 6-(L-a-aminoadipyl)] (3, 5, 6). The homologous 
domains are each about 650 amino acid residues in length and contain modules involved in amino 
acid-specific adenylation (black boxes) and thioester formation (shaded boxes) (7). They are separated by 
nonhomologous regions (white areas). The locations of promoters (p) and genes associated with antibi- 
otic production @sp/sfp, grsT/srfA-TE, and corns) are indicated (3, 5, 7 7, 79). (B) Primary structure of the 
nonribosomally synthesized peptides gramicidin S (row I), surfactin (row 2), and the tripeptide 6-(L-a- 
aminoadipy1)-cysteinyl-D-valine (ACV), an intermediate of penicillins and cephalosporins (row 3). The 
amino acid sequences and enzymes that catalyze peptide synthesis are shown. 

0 1 2 3  4 5 6 kb 
I . 1 . l . l . l . l . l  

%I I Bern HI - -  
- -  - - -  8. subtilis 

sdA-B Eco Rv 
srfA-C srTA-TE 

pJLAi5'-3'-SRF 
(srfA-C integration vector) 

I cat 
pSRF-ALeU I I pSRF-Cys 

IstfA-C disru~tion ~lasrnidl (Domain substitmion plasmid) 

Fig. 2. Construction of hybrid genes encoding 
SrfA-C derivatives. (A) SrfA-C. a leucine-acti- 
vatlng 144-kD enzyme, is encoded by the thlrd 1 2 3 4  1 2 3 4  
o ~ e n  read~nq frame, srfA-C, of the surfactin XI%- - - -, - . 
biosynthesis operon (see Fig. 1) (5). The do- t 

main-flanking regions of srfA-C were amplified 97- - 7 GnA- 

(8). and the resulting two 1.4-kb fragments 6s ,4 - - 
were cloned into pBluescript with the GC-tail- . -  - " -- - 
ing technique (16). (B) Theamplified fragments 

45_ 
7 -  

were used for the construction of the integra- === 
tion vector pJLA;5'-3'-SRF (9), which was - 
used for subsequent, srfA-C-directed marker 
exchange reactions. RBS, ribosomal binding 24- - 
site. Cloning of the cat cassette, mediating 
chlorarnphenicol resistance, between the linker fragments of pJLA;S1-3'-SRF led to the construction of 
the srfA-C disruption plasmid pSRF-ALeu (9, 10). Otherwise, the cloning of domain-coding regions of 
bacterial and fungal origin (see Table 1) (9, 70) resuited in different domain substitution plasmids (for 
instance, pSRF-Cys) (Fig. 2B). The resulting srfA-C domain fusion genes are under the control of a 
heat-inducible tandem promoter (P,/P,) and could be checked for expression and correct length of the 
fusion proteins in E. coli (10.20). (C) Expression of the hybrid gene srfA-C(CysJ (asterisk) was analyzed on 
a 10% SDS-polyacrylamide slab gel (20). The Coomassie-stained gel (left) shows total cell extracts of E. 
coli (pSRF-Cys) at to (lane 2), as well as 1 (lane 3) and 3 (lane 4) hours after heat induction. A commercially 
available marker (left) and the partially purified GrsA (123 kD) protein (right) were used as markers (lane 1). 
Both the stained gel and the corresponding protein immunoblot (right) revealed the expression of a 
protein of -145 kD (20), which coincides with the expected chimeric peptide synthetase. 
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produce surfactin carried the 1.3-kb cat cas- 3A). One clone was chosen for further work 
sette at the chromosomal location of the and designated TS30. 
1.9-kb domain-coding region of srfA-C (Fig. Next, the plasmids containing domain 

--  E E B subtilis 
t -- m - B  tHb -Leu m.c xw I 

Wild type: CmS, Srf+ 

pSRF-ALeu (linearized) 

Screening on Cm resistance Homologous recombination 

E E E 
8. subtilis TS3O 
CmR. St 

pSRF-Qs (linearized) 

Congression with pNEXT33k Homologous recombination 
screening on ~ e o ~  and CmS 

n n 
-- - - t\ I* I I Qs 1 1 -  B. subfilis TS33 
m-i3 Probe I - Pmbe ll ,  sit^ TE NeoR, CmS. (Srf+) 

Fig. 3. Targeted srfA-C replacement in 8 
8. suhtilis. (A) The integrative plasmids 

1 2  3 4 5  1 2 3 4 5  constructed (Fig. 28) were used for in . - -  
vivo sn'A-C disruption and domain sub- 9.4- 9.4- 1 . ~ 

stitution within the chromosome of B. 6.7- * -7.4 
suhtilis. Two steps were required: first, 6.7- m -5.7 0 -5.7 
the srfA-C gene of B. suhtilis (ATCC 4.4- 4.4- 
21332) was disrupted by homologous 
recombination with the linearized plas- B -2.9 
mid pSRF-ALeu (1 I ) .  Subsequently, a 2.3- 2.3- 
domain substitution was achieved by a 2.0- 2.0- 

marker exchange reaction, mediated -1.4 
by the desired domain substitution 
plasmid (for instance, pSRF-Cys) bear- 
ing the gene of a hybrid synthetase 
( 7  1). Loss of the cat cassette and the 
unlinked cotransformation (congression) with pNMT33A, mediating neomycin resistance (Neoq, were 
used to identify strains canying domain replacements (1 I ) .  Cleavage sites of the restriction enzyme Eco 
RI within the chromosomal location of srfA-C are shown (E). CmS, chloramphenicol-sensitive. (B) South- 
em blots of Eco RI-digested genomic DNA were probed with the 5'-linker fragment (left panel) and the 
substituted Cys domain-coding area of acvA (right panel) [shown as double-arrows in (A)], respectively 
(16). For a positive control, we used the unlabeled 5'-sn'A-C fragment (left) and acvA (right) (lanes 1). 
Genomic DNA was prepared from the wild-type strain B. subtilis (ATCC 21 332) (lanes 2), TS30 (lanes 3), 
and TS33 (lanes 4) [compare (A)]. Lanes 5 show Hind Ill-digested A DNA as a negative control. The 
patterns confirmed the disruption (TS30) and domain exchange (TS33) by homologous integration, as 
shown above. Size markers are indicated on the sides of the gels in kilobases. 

substitutions-for example pSRF-Cys (Fig. 
3A) (I  0)-were used to transform TS30 in 
order to substitute the desired domain for 
the cat cassette by marker exchange. Ex- 
change was achieved by congression with 
the plasmid pNEXT33A (1 1). Neomycin- 
resistant cells (NeoR) were selected and 
screened for chloramphenicol sensitivity. 
About 0.1% to 1% of the transformants had 
the desired phenotype, and these were test- 
ed for the correct insertion of the incoming 
hybrid genes into the genetically marked 
chromosome of B. subtilis. Southern blots 
showed that the derived clones were double 
recombinants in which the distinctive do- 
main-coding regions had been inserted into 
the srfA operon in place of the cat gene 
(Fig. 3B). Successful substitutions were car- 
ried out for three bacterial domains from 
the grs operon of B. brewis and the two 
fungal domains of the P. chrysogenum acwA 
gene (Table 1). 

We ex~ected that the introduction of 
domains from heterologous biosynthesis 
operons into the chromosome of B. subtilis 
would cause the synthesis of altered surfac- 
tin lipopeptides. Accordingly, the surfactin 
derivatives produced by the chimeric syn- 
thetases were extracted from the culture 
broth of different strains (1 2). examined for 
their hemolytic activity (1 3j; and analyzed 
by mass spectrometry (14). As concluded 
from infrared spectra, all of the engineered 
strains produced compounds similar in 
structure to wild-type surfactin (1 3,  15). To 
determine the differences between the var- 
ious isoforms extracted. we further analvzed 
the products using mass spectrometry. 

The natural surfactin yielded peaks at a 
mass-to-charge ratio (m/z) of 1009, 1023, 
and 1037, as expected from the known se- 
quence with slight variations in the length 
of its P-hydroxy fatty acid moiety (n = 7 to 
10) (compare Fig. 1B). These [M+H]+ 
peaks were accompanied by corresponding 
[M+Na]+ signals appearing at m/z 1032, 
1046, and 1060 (Table 1) (15). Table 1 
summarizes the data for the major [M+H]+ 
peaks obtained from the different surfactin 
derivatives. Comparison of these data with 
those for the wild tvDe clearlv indicates the 

Fig. 4. Mass spectra of engineered 
[Cys7] surfactin (14). The cyclic lipohep- 600 - 
tapeptide appears as a complex mix- 
ture of several isoforms that show vari- $ 
ations in the length of their P-hydroxy c 

$ 400- 
fatty acid moiety (n = 7 to 10 CH, = 
groups) (Fig. 1 B). The [M+H]+ peaks at g 
m/z 999, 101 3, 1027, and 1041 were 3 
accompanied by the corresponding 2 200- 

[M+Na]+ peaks (m/z 1036, 1050, and 
1064). Comparison of these data with 
the molecular masses of the wild-type 0 I 

surfactin confirmed the replacement of 950 1000 1050 1100 

the Leu7 residue by Cys in the con- & 

structed strain TS33. 

, & 

replacement of the original Leu7 residue by 
the various amino acids. as deduced from the 
expected sequences of these modified li- 
popeptides (Table 1). For example, in the 
mass spectra of the [Cys7]surfactin (Fig. 4), 
for each of the various lipid moieties the 
corresponding peaks of the isoform show 
values that are 10 daltons less, matching the 
difference between the molecular masses of 
the amino acids leucine and cysteine. 

The wild-type lipopeptide antibiotic sur- 
factin is a powerful biosurfactant and as 
such has many potential industrial applica- 
tions (13). A simple test to evaluate its 
biological activity is the lysis of erythro- 
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Table 1. Summary of domain exchanges in srfA-C. The numbers in the domain indicate the location of 
the domain-coding regions within the DNA sequence of the corresponding gene, as reported for silA (5), 
grs (31, and acvA (6). Hemolflic activity (Hem. act.) was monitored on blood agar plates as described (13). 
MS, mass spectra; E. c., E. coli; B. s., B. subtilis. The Phe domain originates in the grsA gene; the Orn and 
Leu domains originate in the grsB genes. 

Expression* in 
Hem. 

MS datat 
Domain 

act. (major Peptide product 
E. c. 5. s. peaks) 

B, subtilis (wild-type sriA-C) 
Leu (22960-24850) + + + 1023,1037 [Leu7]surfactin 
ALeu7 (22960-24850) - - - 928, 942 [ALeu7]surfactin, linear 

B. brevis (grs) 
Phe (1 890-3760) + + + 1057,1071 [Phe7]surfactin 
Orn (1 2770-1 4670) + + + 1024,1038 [Orn7]suriactin 
Leu (1 5920-1 7790) + + + 1023,1037 [Leu7]surfactin 

P. chrysogenum (acvA) 
Cys (5280-71 80) + + + 101 3,1027 [Cys7]surfactin 
Val (8490-1 0460) + + + 1009,1023 [Va17]surfactin 

*Expression was tested by protein immunobot analysis as described (20). +Molecular weights have been deter- 
mined from mass spectra derived for the various lipopept~des extracted (72, 74). 

cytes. To investigate the influence of the 
amino acid substitutions on hemolytic ac- 
tivity, we analyzed the extracted surfactins 
on blood agar plates (13). The consequence 
of srfA-C disruption was the coinplete loss 
of this activity, whereas the engineered bio- 
surfactants, generated by domain exchang- 
es, restored biological activity. However, in 
all cases the extent of erythrocyte lysis was 
slightly reduced compared to that in wild- 
type peptide (15). 

Our approach permits the construction 
of hybrid genes encoding peptide syntheta- 
ses with altered amino acid specificities. 
Such engineered genes can be introduced 
by homologous recombination into the tar- 
get site of the desired antibiotic biosynthe- 
sis operon and cause a progralnmed alter- 
ation within the peptide product. This ap- 
proach represents a method for the in vivo 
generation of peptides, allowing the specific 
engineering of potentially useful secondary 
metabolites. 
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