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Sex differences in central tendency, variability, and numbers of high scores on mental 
tests have been extensively studied. Research has not always seemed to yield con- 
sistent results, partly because most studies have not used representative samples of 
national populations. An analysis of mental test scores from six studies that used 
national probability samples provided evidence that although average sex differences 
have been generally small and stable over time, the test scores of males consistently 
have larger variance. Except in tests of reading comprehension, perceptual speed, and 
associative memory, males typically outnumber females substantially among high- 
scoring individuals. 

Understanding whether there are sex dif- more direct evidence. For several decades, 
ferences in intellectual abilities-and. if so. studies have used mental tests to collect 
to what degree-has long been a concern of data on cognitive sex differences in small 
scientists in inany disciplines. Such differ- samples of people. Such salnples were con- 
ences are relevant to people who are inter- veniently available but were not chosen on 
ested in achieving fair representation of a probability sampling basis to be represen- 
women in scientific and technical fields tative of a suecific wouulation. Much of this . L 

where excellence requires a high degree of work is summarized by Maccoby (6) and 
ability. Recent work in labor economics has Maccoby and Jacklin (7). Quantitative syn- 
also found that sex differences in ability theses (meta-analyses) of this work have 
(particularly mathematical ability) are asso- also been provided (8, 9). A more recent 
ciated with sex differences in earnines and a~nroach to the assessment of coenitive sex - L " 

occupational status (1). Studies of sex dif- differences has been the combination of 
ferences in ability conducted during the late evidence from test norming samples, which 
19th and earlv 20th centuries involved are believed to be more re~resentative than 
rather weak empirical evidence ( 2 )  that was the samples chosen for s1r;all-scale research 
usuallv collected from samwles of ueoule studies (10, 1 1 ). . , 

that were not dernonstrablyLrepresentative Variability. The assumption that the vari- 
of any important population. The quality of ance of intellectual abilities among men is 
the evidence has ilnuroved in recent de- greater than among women seems to have - - 
cades as a result of the development of arisen in connection with evolutionary the- 
modern survev methods. which have made orv before 1900 (2). Maccobv and Tacklin 
it possible to identify alld collect data from (7) concluded that, comparei to the score 
nationally representative samples at a rea- distributions of females in various mental 
sonable cost ( 3 ) .  In the nast 35 vears. six tests. the distributions of male scores had ~, , , 

large-scale surveys have used these methods larger variance for some abilities (mathe- 
to collect mental test data from renresenta- matical and snatial abilities) but had eaual 
tive samples of adolescents and young 
adults in the United States. We used these 
survey data to investigate sex differences in 
intellectual abilities. Specifically, we exam- 
ined the magnitude of sex differences in 
mean scores, in the variance of these scores, 
and in the numbers of individuals with 
narticularlv hieh or low scores. 

variance for oihers. At abou; the same tiine, 
Jensen (12) reviewed the literature on sex 
differences in intelligence quotient (IQ) 
and concluded that the standard deviation 
of male IQ scores was about 20% larger 
than that of females. Recently, Feingold 
( 1  1 )  reviewed test norlning summary statis- 
tics to st~tdv sex differences in variabilitv , - 

The relative frequency of eminent nlen and concluded that the variance of malk 
and women was one of the first lines of test scores was larger than that for females 
evidence used to support the notion of sex in tests of quantitative and spatial ability 
differences in cognitive abilities (4). Pear- but not in tests of verbal ability. 
son (5) criticized this indirect evidence of Talent. The connection between vari- 
mental ability and urged the collection of ance and the occurrence of unusually tal- 

ented individuals (individuals with unusu- 

Ti7e authors are in the Department of Education, Univer- a l ' ~  high lnental test scores) was recog- 
sitv of Chicaao. 5835 South Kimbark Avenue. Chicaao, nized bv Thorndike ( 1  3 ) ,  who felt that the 
IL 60637. USA. most important consequences of sex dif- 
*To whom correspondence should be addressed. ferences in variance would occur at the 

highest percentiles of the ability distribu- 
tion. Researchers such as Terman ( 1  4)  and 
Benbow (15) who sought out talented in- 
dividuals found many more males than 
females among the talented individuals 
thev identified. However, because thev ex- 
amined only individuals selected on' the 
basis of high test scores, their research 
desien could not determine the source of 

'3 

the imbalance favoring males. Such differ- 
ences could be a conseauence of greater " 

variance among males [even in the ab- 
sence of a mean difference favoring males 
(16)], greater average male scores, the 
joint effects of differences in mean and 
variance, or selection bias favoring males 
( 1  6-1 8).  Feingold ( 1  1) and Hedges and 
Friedman (19) evaluated data from test 
normine studies to determine the likelv - 
joint effects of sex differences in mean and 
variance on the numbers of males and 
females that would be expected in the tails 
of the ability distributions. Their findings 
suggested that the larger numbers of high- 
scoring males found in studies of talented 
people inight be primarily a consequence 
of sex differences in test score variance. 

Weaknesses of previous research. Most 
work on sex differences and talent has re- 
lied on data collected from salnples that 
were not representative of the nation as a 
whole. Reviews and meta-analvses of data 
from nonrepresentative samples are not 
necessarily any more representative than 
the studies on which they are based. For 
example, although the samples in Hyde's 
(8) meta-analvsis of cognitive sex differen- ~, 

ces included one natiokally representative 
samule and other reasonablv unselected 
samples, it also included samples drawn 
from Harvard undergraduates, other college 
students ifrorn colleees with less selective 

'3 

entrance requirements), and the Terman 
study of geniuses. Other studies have made 
use of tests that are offered nationallv but 
taken selectively, such as the Scholastic 
Aptitude Test (SAT) and other College 
Board tests (20). Studies of talented indi- 
viduals have allnost exclusively used sam- 
nles derived frotn "talent searches" that so- 
licit volunteers and consequently have a 
potential for bias; this problem was recog- 
nized by researchers at least 40 years ago 
(18). The use of test norming samples 
would seem to mitigate some of these diffi- " 
culties because such samples are typically 
laree and broad-based. But thev are usuallv - 
quota samples and are almost never nation- 
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ally representative in the sense of being true 
national probability samples. When data 
from test norming samples have been used 
to study talent ( 1  1 ,  19), the computation of 
the characteristics of extreme scores from 
the means and standard deviations requires 
the assumption that scores are normally 
distributed. This assumption is sometimes 
questionable (2 1 ). 

These biases due to selection, sampling, 
and the use of distributional assumptions 
may be relatively small, yet they are impor- 
tant because overall sex differences in ei- 
ther mean or variance are themselves small. 
Hence it is plausible that these sources of 
bias may have effects that are not negligible 
com~ared to real sex differences. Also. the 
small differences in mean or variance that 
have been found can lead to verv large , " 

differences (several to one) in the numbers 
of males as compared to females in the 
upper percentiles of the national distribu- 
tion ( 1  9) .  For example, a mean difference of 
0.3 standard deviations, which would be 
judged as "small" by the convention of 
effect size introduced by Cohen (22) ,  cou- 
wled with a variance difference of 15%. 
could lead to 2.5 times as many males as 
females in the  to^ 5% of the test score 
distribution and more than 6 times as many 
males in the top 0.1%. 

Method 

We performed secondary analyses of six 
large data sets collected between 1960 and 
1992. Each of these survevs used a stratified 
national probability samile of adolescents 
and provided sampling weights to permit 
inferences about specifically defined na- 
tional populations. The surveys, which used 
slightly different population definitions and 
measured mental abilities with slightly d~f -  
ferent conventional mental tests, are de- 
scribed below and summarized in Table 1. 

The Project Talent complete age group (age 
15) data set. In 1960. Proiect Talent collect- 
e d  a national probabiliiy sample of high 
school students (23), along with a supple- 
mentary sample of 15-year-olds who were 
not in high school (because they had 
dropped out, were not in school as a result 
of serious illness or physical disability, or 
were mentally retarded or institutionalized). 
The combined sample of 73,425 examinees 
was representative of the entire population 
of 15-year-olds in the United States in 1960 
(24). The examinees were administered a 
battery of 23 cognitive tests over a full day 
of testing. The tests are described in (23). 

The NLS-72 data set. The National Lon- 
gitudinal Study of the High School Class of 
1972 (NLS-72) collected a national proba- 
bility sample of high school seniors from 
public and private high schools. The sample 
was designed to be representative of the 

students in the senior class in American 
high schools in the spring of 1972. A total 
of 16,860 students were administered a 69- 
minute batterv of tests that measured both 
verbal and nokverbal abilities. The six spe- 
cific tests used were vocabularv, reading. 
mathematics, letter groups (a tes; of induc- 
tive reasoning), picture number (a test of 
associative memory), and mosaic compari- 
sons (a test of perceptual speed and accura- 
cy) (25). 

The NLSY data set. The National Longi- 
tudinal Study of Youth (NLSY) was con- 
ducted to studv labor force behavior. The 
sample we used actually consists of three 
independent probability samples that, when 
appropriately combined, yield a cross-sec- 
tional sample representing the noninstitu- 
tionalized civilian segment of American 
youth (ages 15 to 22) as of 1 January 1980. 
In total, 11,914 participants were adminis- 
tered the Armed Services Vocational Apti- 
tude Battery (ASVAB) Form 8A in the 
spring and summer of 1980 (26). 

The ASVAB was developed by the U.S. 
Armed Services as a tool for selecting and 
sorting new recruits into appropriate train- 
ing programs and, subsequently, jobs. The 
ASVAB comprises 10 scales, all of which 
are timed. Eight of these are "power tests"; 
the remaining two are "speed tests," that is, 
quickness in performance is an aspect of the 
ability being measured. The 10 scales are 
arithmetic reasoning, mathematics knowl- 
edge, word knowledge (vocabulary), para- 
graph comprehension (reading comprehen- 
sion), general science, numerical operations 
(a test of speed in arithmetic computation), 

Table 1. Summary of the characteristics of the six 

coding speed, automotive and shop infor- 
mation (a measure of general knowledge 
and principles of auto repair, metal and 
wood shop procedures, and tool use), me- 
chanical comprehension (a test of mechan- 
ical principles, including ability to decipher 
and visualize motion in schematic draw- 
ings), and electronics information. 

The HS&B data set. High School and 
Beyond, 1980: A Longitudinal Survey of 
Students in the United States (HS&B) col- 
lected national probability samples in the 
spring of 1980 for two separate cohorts, 
senior and sophomore students in public 
and private high schools. We used the sam- 
ple of 25,069 high school seniors only. The 
tests administered were vocabulary, reading, 
mathematics, spatial ability, picture number 
(a test of associative memory), and mosaic 
comparisons (a test of perceptual speed and 
accuracy). All of these tests are very similar 
or identical to the corresponding tests used 
in NLS-72 (25). 

The NELS:88 data set. The National 
Educational Longitudinal Study of the 
Eighth Grade Class of 1988 (NELS:88) 
used a two-stage national probability sam- 
ple of 24,599 eighth-grade students who 
were enrolled in public and private 
schools in 1988. The students were fol- 
lowed for 4 years and were resurveyed in 
1992, when most were in the 12th grade. 
Some students surveyed were not in school 
4 years after the eighth grade because they 
dropped out or graduated early. In 1992, 
these students were administered an 85- 
minute battery of four cognitive tests that 
were designed to measure achievement in 

data sets. 

Characterstic Pro~ect ~ ~ s . 7 2  N LSY HS&B NELS:88 NAEP Talent 

Year of assessment 1960 1972 1980 1980 1992 1971 -1 992 
Sample size 73,425 16,860 11,914 25,069 24,599 Varies 
Population All 15-year- 12th- Noninstitution- 12th- 8th-grade 17-year- 

olds grade alized 15- to grade students olds in 
students 22-year-ods students as of 1988 school 

Abilities measured 
Reading + + + + + + 

comprehension 
Vocabulary 
Mathematics 
Perceptual speed 
Science 
Social studies 
Nonverbal 

reasoning 
Associative 

memory 
Spatal ability 
Mechanical 

reasoning 
Electronics 

information 
Auto and shop 

information 
Writing 
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Table 2. Sex differences in means, variance, and numbers of extreme scores. Differences in means are 
expressed as d values (in standard deviation units). Differences in variance are expressed as VR values 
(ratios of male score variance to female score variance). Differences in numbers of extreme scores are 
expressed as ratios of the number of males to the number of females who scored in the bottom 10%, top 
10%, or top 5% of the national distribution. Standard errors are in parentheses (31). For each subject 
area, the surveys are listed in chronological order. Abbreviations for individual Project Talent and NLSY 
tests within a subject area are as follows: AR, arithmetic reasoning; BS, biological science information; 
CC, clerical checking; CS, coding speed; MK, mathematics knowledge, NO, numerical operations; Ol, 
object inspection; PS, physical science information; and TR, table reading. Values not given could not be 
computed. An infinite ratio in the tails reflects the fact that no females scored in the tail examined. 

Subject area ( 

Reading comprehension 
Project Talent 
NLS-72 
NLSY 
HS&B 
NELS:88 

Vocabulary 
Project Talent 
NLS-72 
NLSY 
HS&B 

Mathematics 
Project Talent 
NLS-72 
NLSY: AR 

MK 
HS&B 
NELS.-88 

Perceptual speed 
Project Talent: TR 

CC 
Ol 

NLS-72 
NLSY: CS 

NO 
HS&B 

Science 
Project Talent: PS 

BS 
NLSY 
NELS:88 

Social studies 
Project Talent 
NELS:88 

Nonverbal reasoning 
Project Talent 
NLS-72 

Associative memory 
Project Talent 
NLS-72 
HS&B 

Spatial ability 
Project Talent 
HS&B 

Mechanical reasoning 
Project Talent 
NLSY 

Electronics information 
Project Talent 
NLSY 

-0.15 
-0.05 
-0.18 

i 

(0.013) 
(0.027) 
(0.031) 

0.002(0.017) 
-0.09 

0.25 
-0.06 
-0.03 

0.07 

0.12 
0.24 
0.26 
0.08 
0.22 
0.03 

-0.23 
-0.43 
-0.23 
-0.21 

0.50 
0.29 
0.38 
0.11 

0.31 
0.04 

0.04 
-0.22 

-0.32 
-0.26 
-0.18 

0.13 
0.25 

0.83 
0.72 

1.22 
0.72 

Auto and shop information 
NLSY 1.02 

(0.020) 

(0.013) 
(0.027) 
(0.031) 
(0.017) 

(0.013) 
(0.027) 
(0.031) 
(0.031) 
(0.022) 
(0.020) 

(0.027) 
(0.031) 
(0.031) 
(0.022) 

(0.013) 
(0.013) 
(0.031) 
(0.020) 

(0.013) 
(0.020) 

(0.013) 
(0.027) 

(0.013) 
(0.027) 
(0.022) 

(0.013) 
(0.022) 

(0.012) 
(0.030) 

(0.011) 
(0.030) 

(0.029) 

VR 

1.16(0.015) 
1.03 (0.028) 
1.16(0.036) 
1.10(0.024) 
1.16(0.023) 

1.05(0.014) 
1.00 (0.027) 
1.08 (0.034) 
1.05 (0.023) 

1.20(0.015) 
1.05 (0.028) 
1.25 (0.039) 
1.19(0.037) 
1.16(0.026) 
1.06(0.021) 

— 
— 
— 

1.04 (0.028) 
0.98(0.031) 
1.08 (0.034) 
1.15(0.025) 

1.28(0.017) 
1.15(0.015) 
1.42 (0.044) 
1.14(0.023) 

1.26(0.016) 
1.14(0.023) 

1.04(0.013) 
1.15(0.031) 

0.82(0.011) 
1.01 (0.027) 
1.14(0.025) 

1.27(0.028) 
1.27 (0.028) 

1.45(0.019) 
1.74(0.055) 

2.72 (0.035) 
1.56 (0.049) 

2.34 (0.073) 

<10% 

1.71 (0.088) 
1.15(0.13) 
1.50(0.19) 
1.07 (0.099) 
1.75(0.14) 

0.89 (0.050) 
1.02(0.12) 
1.20(0.15) 
0.84 (0.082) 

1.00 (0.055) 
0.72 (0.090) 
1.84 (0.23) 
0.99(0.13) 
0.77 (0.078) 
0.97 (0.082) 

2.17(0.11) 
1.79 (0.092) 
1.50 (0.077) 
1.54(0.17) 
1.60 (0.20) 
1.50(0.19) 
1.49(0.13) 

0.57 (0.038) 
0.78 (0.046) 
0.92(0.13) 
0.87 (0.076) 

0.89 (0.050) 
1.23(0.10) 

1.00 (0.055) 
1.49(0.16) 

1.56 (0.080) 
1.44(0.16) 
1.23(0.11) 

0.82 (0.047) 
0.79 (0.079) 

0.36 (0.029) 
0.60 (0.094) 

0.44 (0.033) 
0.62 (0.096) 

0.44 (0.079) 

Tail region 

>90% 

0.90(0.051) 
0.94(0.11) 
0.83(0.12) 
1.03 (0.096) 
0.80 (0.072) 

1.57(0.081) 
0.89(0.11) 
0.87(0.12) 
1.06 (0.098) 

1.33 (0.069) 
1.76(0.019) 
1.90(0.24) 
1.70(0.21) 
1.67(0.14) 
1.34(0.11) 

0.82 (0.047) 
0.73 (0.044) 
1.00 (0.055) 
0.70 (0.089) 
0.41 (0.077) 
0.69(0.10) 
0.73 (0.075) 

2.83(0.15) 
2.00(0.10) 
3.40 (0.45) 
2.04(0.16) 

2.29(0.12) 
1.59(0.13) 

1.09 (0.059) 
0.74 (0.092) 

0.50 (0.035) 
0.70 (0.089) 

— 

1.86 (0.095) 
1.90(0.17) 

8.50 (0.059) 
8.00 (1.3) 

15.20(1.3) 
8.00(1.3) 

66.3 (27) 

>95% 

1.00 (0.080) 
0.81* (0.14) 

— 
1.06(0.14) 
0.83(0.11) 

1.50(0.011) 
0.87(0.15) 

— 
1.06(0.14) 

1.50(0.011) 
2.34* (0.36) 
2.20 (0.39) 
1.90(0.34) 
2.06 (0.26) 
1.64(0.18) 

1.00 (0.080) 
0.81 (0.068) 
1.00 (0.080) 
0.69(0.12) 
0.38(0.11) 
0.67(0.14) 
0.79(0.12) 

7.00 (0.65) 
— 

7.20(1.6) 
2.50 (0.28) 

3.50 (0.27) 
1.74(0.19) 

1.00 (0.080) 
0.67(0.12) 

0.43 (0.048) 
0.69(0.12) 

— 

2.33 (0.35) 
2.39 (0.30) 

11.00(1.2) 
10.90(2.8) 

CO 

9.90 (2.5) 

464 (702) 

* These figures are for the 97th percentile. 

reading, mathematics, science, and social 
studies (history and government). 

The NAEP trend data sets. In 1969, Con­
gress established the National Assessment of 
Educational Progress (NAEP) program to 
monitor the academic achievement of 9-, 
13-, and 17-year-olds. The NAEP program 
has periodically tested large samples (10,000 
to 100,000 students) in the areas of reading, 
mathematics, science, and writing. NAEP 
samples are national probability samples of 
students at the ages of interest who are in 
school. One part of the NAEP program is the 
periodic collection of data on equivalent 
measures, using exactly the same procedures 
in each assessment wave; these so-called 
trend data permit the accurate estimation of 
trends over time (27). We used only the 
17-year-old samples. 

Analysis. For each test in each survey, we 
used the sampling weights provided by the 
surveys to construct estimates of the nation­
al means and variances of the test score 
distribution for each sex. We then calculat­
ed variance ratios (ratios of male score vari­
ance to female score variance) and repre­
sented mean differences in standard devia­
tion units by subtracting the estimated na­
tional mean score for females from that of 
males and dividing by the estimated nation­
al standard deviation for the entire distri­
bution for both sexes combined. To com­
pute national percentiles for the entire pop­
ulation, we first computed an estimate of 
the proportions of the test scores of each sex 
in the national population that were in the 
top 5%, top 10%, and bottom 10% of each 
test score distribution. These represent the 
proportions of "talented" or "untalented" 
individuals (as defined according to a series 
of different definitions of degree of talent). 
We then computed ratios of the estimated 
numbers of males and females in the na­
tional population who fell into each talent 
category (28). 

Results 

Sex differences in means. We used the stan­
dardized mean difference d to evaluate sex 
differences in means. Because d was calcu­
lated as the mean score for males minus the 
mean score for females, divided by the stan­
dard deviation in the total population, a 
positive value of d implies that males scored 
higher on average. Data from five of the six 
surveys (Project Talent, NLS-72, NLSY, 
HS&B, and the 1992 follow-up of NELS: 
88) concerning sex differences in means are 
presented in Table 2. Virtually all of the 
mean differences are several times their 
standard errors and hence are reliably dif­
ferent from 0 at P = 0.05. However, be­
cause the sample sizes of these surveys were 
large, even differences too small to be of 
practical importance could be statistically 
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significant. We therefore interpreted the 
sizes of effects according to Cohen's con- 
vention (22), which construes a standard- 
ized mean difference of 0.2 as small, 0.5 as 
medium, and 0.8 as large. 

On  average, females exhibited a slight 
tendency to perform better on tests of read- 
ing comprehension, perceptual speed, and 
associative memory, and males exhibited a 
slight tendency to perform better on tests of 
mathematics and social studies. All of the 
effect sizes were relatively small except for 
those associated with vocational aptitude 
scales (mechanical reasoning, electronics 
information, and auto and shop informa- 
tion) in which average males performed 
much better than average females. The ef- 
fect sizes for science were slightly to mod- 
erately positive, and those for perceptual 
speed were slightly to moderately negative. 
Thus, with resDect to the effect size conven- 
tion, these data suggest that average sex 
differences are generally rather small. 

It is not obvious from these data that sex 
differences have changed since 1960. How- 
ever, the population definitions of these 
five surveys are not identical. Project Tal- 
ent (in 1960) and NLSY (in 1980) surveyed 
the total population of adolescents and 
young adults, both in school and out of 
school, whereas NLS-72, HS&B, and 
NELS:88 surveyed only students who were 
in school (in either the 8th or 12th grade). 
The NAEP trend studies measured a more 
limited range of abilities, but because the 
population definition and mental tests did 
not vary between assessment waves, the 
trends were measured with less ambiguity. 
Table 3 gives the sex differences in means 
(as d values) for the NAEP trend sample. 
Females ~erforrned better in reading and 

u 

writing, and males performed better in sci- 
ence and mathematics. Average sex differ- 
ences were small except for writing, in 
which females performed substantially bet- 
ter than males in everv vear. Although av- , , " 

erage sex differences in mathematics and 
science scores appear to have narrowed 

somewhat over time, sex differences in 
reading and writing scores have not. 

Sex  differences in  variance. Examination 
J d 

of the ratios of male score variance to fe- 
male score variance (VR values) in Table 2 
reveals that the variance of male scores is 
larger than that of fernale scores (that is, 
VR > 1) in all but two cases: the Proiect 
Talent associative memory (word memory) 
test and the NLSY coding speed test. In 
both cases, measures of the same constructs 
in other surveys showed greater male vari- 
ability. The difference in variance is small, 
typically on the order of 3 to 15%. Howev- 
er, male scores had considerably larger vari- 
ance than fernale scores on some tests, such 
as measures of science achievement and the 
vocational aptitude scales. There is little 
evidence from the data in Table 2 that sex 
differences in variance have changed sys- 
tematically over time. Here again, differ- 
ences arnong the population definitions of 
the surveys might obscure small changes in 
variance. The data on sex differences in 
variance computed from the NAEP trend 
samples (Table 3) suggest that the variance 
of male scores is typically greater than that 
of fernale scores (all of the VRs are > 1) and 
that the difference is typically 5 to 20%. 
Trends over time in the VRs cornputed 
from the NAEP data are not striking, but it ", 

appears ;hat for mathematics and science 
scores these ratios have increased over time. 

Sex  and talent. Sex differences in the 
proportions of males and females scoring in 
the extreme ranges of the ability test score 
distributions are summarized in Table 2. 
This table gives the ratio of the number of 
males to the number of females who scored 
in the bottom 10%, top lo%, and top 5% of 
the national distribution for both sexes 
combined; values of this ratio greater than 1 
reflect more males than females. For read- 
ing comprehension, perceptual speed, and 
associative memory, more males than fe- 
males scored in the bottom 10% of the 
national distribution (ratios of 1.4 to 2.2) 
and fewer males scored in the top 5 to 10%. 

In mathematics, science, and social studies, 
more males than females were in the upper 
tails of the distribution (ratios of 1.3 to 3.4 
in the top 10%) and more females than 
males were in the lower tails. The differenc- 
es favoring males were more profound in 
the vocational aptitude scales, with 8 to 10 
times as many males as females scoring in 
the top 10%. 

It has been shown that if scores are 
normally distributed in two populations and 
if one population has both a higher mean 
score and a larger variance than the other, 
then the ratio of the number of individuals 
in the population with the higher mean to 
that of the other population (the tail ratio) 
increases at higher percentiles in the upper 
tails of the distribution (1 7, 19). This pat- 
tern held for the tests that had sufficiently 
high ceilings to accommodate the estima- 
tion of percentiles above 95. For example, 
in the Project Talent mathematics (total) 
scale, the sex ratio was 1.3 for scores in the 
top lo%, 1.5 in the top 5%, 2.1 in the top 
3%, and 7.0 in the top 1% of the overall 
distribution. For several of the science and 
vocational aptitude tests, the sex ratio be- 
came infinite in the top 3% or 1% of the 
overall distribution because no females 
scored in this range. 

implications 

These data demonstrate that in U.S. popu- 
lations, the test scores of males are indeed 
more variable than those of females, at least 
for the abilities measured during the 32-year 
period covered by the six national surveys. 
Moreover, there is little indication that 
variance ratios are changing over time. The 
evidence presented here also helps to re- 
solve an apparent contradiction between 
the high ratios of males to fernales in highly 
talented samples and the generally small 
mean differences found between the sexes 
in relatively unselected samples. These data 
show that high sex ratios (5:  1 among the 
top 3% and 7 : l  arnong the top 1%) are 

Table 3. Sex differences in mean and variance computed from NAEP trend sample data for 17-year-old students. Standard errors are in parentheses (31). The 
NAEP writing data were collected from representative samples of children by grade rather than age; in this case, grade 11  corresponds roughly to age 17. 

Survey Reading Mathematics Science Writ~ng 

year 
d VR d VR d VR d VR 
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found in the upper tails of the ability dis- 
tributions of unselected (nationally repre- 
sentative) samples. Thus, the high sex ra- 
tios found in some highly talented samples 
need not be attributed to differential selec- 
tion by sex. 

Our analyses suggest that average sex 
differences in most measured abilities are 
small, with the possible exception of sci- 
ence, writing, and stereotypically male vo- 
cational aptitudes. Contrary to the findings 
of small-scale studies, these average differ- 
ences do not appear to be decreasing but are 
relatively stable across the 32-year period 
investigated. This finding demonstrates the 
weakness of relying on data that were not 
collected from explicitly representative 
sam~les to estimate values of small be- 
tween-group differences or to discern weak 
trends over time for the nation as a whole. 

The large sex differences in writing abil- 
ity suggested by the NAEP trend data are 
alarming, particularly because these differ- 
ences were found on assessments that used 
actual writing samples. The data imply that 
males are, on average, at a rather profound 
disadvantage in the performance of this basic 
skill. With resnect to sex differences in vo- 
cational aptitude scores, military research 
has found that these scales do have substan- 
tial predictive validity for the obvious occu- 
pations. These occupations have been male- 
dominated, and attempts to promote fairness 
in representation may be thwarted by a 
shortage of females with a basic amount of 
aptitude relevant to these occupations. 

The sex differences in mathematics and 
science scores, although smaller, are of con- 
cern because ability and achievement in 
science and mathematics may be necessary 
to excel in scientific and technical occuwa- 
tions. Small mean differences combined 
with modest differences in variance can 
have a surprisingly large effect on the num- 
ber of individuals who excel. There is evi- 
dence [for example, from follow-up surveys 
of occupational behavior in Project Talent 
(29)] that people who have careers in sci- 
ence and engineering are overwhelmingly 
more likely to have scored in the 90th 
nercentile on mathematics tests in high - 
school. Sex differences in variance and 
mean lead to substantially fewer females 
than males who score in the uDner tails of 

L L 

the mathematics and science ability distri- 
butions and hence are woised to succeed in 
the sciences. The achievement of fair rep- 
resentation of women in science will be 
much more difficult if there are onlv one- 
half to one-seventh as many women as men 
who excel in the relevant abilities. 

Differences in the representation of the 
sexes in the tails of ability distributions are 

likely to figure increasingly in policy discus- 
sions about salary equity. Economists have 
recently begun to use individual differences 
in ability test scores to explain sex differ- 
ences in wages and occupational advance- 
ment (30). Different kinds of abilities are 
not equally related to economic outcomes; 
one recent empirical study suggests that 
quantitative ability test scores (but not ver- 
bal ability test scores) "[account] for the 
observed male-female differences in earn- 
ings and occupational choices of recent col- 
lege graduates" ( 1 ) .  The generally larger 
numbers of males who perform near the 
bottom of the distribution in reading corn- 
prehension and writing also have policy 
implications. It seems likely that individuals 
with such poor literacy skills will have dif- 
ficulty finding employment in an increas- 
ingly information-driven economy. Thus, 
some intervention may be required to en- 
able them to participate constructively in 
the work force. 

Our results shed little light on the origins 
of sex differences in either mean or variabil- 
ity. However, the largest sex differences oc- 
cur in areas not generally taught in school 
(such as mechanical comprehension and 
other vocational aptitudes). Moderately 
large differences are associated with perfor- 
mance in subject areas in which there ap- 
pears to be considerable variability in the 
amount, content, and difficulty of the cur- 
riculum (such as science, social studies, and 
mathematics). If males are more likely to 
undertake more, or more challenging, 
course work in these areas, we would expect 
the observed pattern of sex differences to 
emerge. However, our data are not entirely 
consistent with the hypothesis that substan- 
tial sex differences arise onlv in connection 
with differences in opportunity to learn, be- 
cause we found substantial differences in 
writing performance, which is presumably a 
skill taught to all students. If, as seems 
likely, differences in ability arise because 
of differences in experience and socializa- 
tion, more work is needed to document 
that these differences exist and are linked 
to ability. 
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