
n i s ~ n  requires a much smaller sweep volume 
for isomerization than the  rotation inecha- 
nism, so that the  azobenzene derivatives 
undergo isolnerization in relatively rigid 
matrices such as polymer matrices below TFI, 
depending o n  the spatial and temporal dis- 
tribution of the  free volume in the  polymer 
(13-15). Below T,, segmental movement of 
the  main chain of the  polymers is frozen; 
however, movement of side chains is al- 
lowed to some extent. 

In  a system in which the  center of grav- 
ity of each lnolecule is aligned regularly, as 
in crystals, optical anisotropy still remains 
active even after the  anisotroov in the  
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Observation of Shoemaker-Levy Impacts by the 
Galileo Photopolarimeter Radiometer 
Terry Z. Martin," Glenn S. Orton, Larry D. Travis, 

Leslie K. Tamppari, Ian Claypool 

The Galileo Photopolarimeter Radiometer experiment made direct photometric obser- 
vations at 678 and 945 nanometers of several comet Shoemaker-Levy 9 fragments 
impacting with Jupiter. Initial flashes occurred at (fragment G) 18 July 1994 07:33:32, (H) 
18 July 19:31 :58, (L) 19 July 22:16:48, and (Ql) 20 July 20:13:52 [equivalent universal 
time coordinated (UTC) observed at Earth], with relative peak 945-nanometer bright- 
nesses of 0.87, 0.67, 1.00, and 0.42, respectively. The light curves show a 2-second rise 
to maximum, a 10-second plateau, and an accelerating falloff. The Q1 event, observed 
at both wavelengths, yielded a color temperature of more than 10,000 kelvin at its peak. 

T h e  impact of comet Shoemaker-Levy 9 
(SL9) into Jupiter in  July 1994 stimulated 
an  unparalleled set of astronomical obser- 
vations. T h e  instrument complement of the  
Galileo spacecraft, o n  its way to a Decem- 
ber 1995 orbit insertion a t  Jupiter, observed 
the  impact events directly from a vantage 
point above the  dawn terminator. A num- 
ber of Earth-based observers have reoorted 
detection of impact-related phenomena a t  
times o reced~ne  those from Galileo, in suite 

u 

of the  impacts occurring behind the  limb of 
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Jupiter as viewed frorn Earth. Correlation of 
these disparate data sets should lead to  a 
model of how those slngular events took 
place. W e  report here observat~ons by the 
Photopolarimeter Radiometer (PPR) ( I ) ,  a 
single-field-of-view instrument that uses a 
rotating filter wheel covering wavelengths 
in the  visible and near infrared for photo- 
metric and oolarimetr~c remote sensine of - 
Jupiter's atmosphere and satellites. 

For the SL9 observations, the  PPR was 
used as a high-speed photometer, maximiz- 
ing the  likelihood of observing the  radia- 

u u 

tion associated with the  impact events, giv- 
en  the considerable uncertainty about their 
magnitude, timing, and duration ( 2 ) .  Con-  
sequently, single-filter measurements with a 
0.23-s samole time were used for most of the  
observed impacts. 

Among the  available wavelengths, we 
selected 678 and 945 n m  (with bandwidths 
of 9 and 11 nm,  respectively). Most events 
were observed at 945 n m  alone, to  allow 
detection of thermal emission froin a rapid- 
ly rising fireball, which at some 3000 K (3, 
4)  would be cooler than the entry meteor 
flash. For fragment Q 1 ,  however, measure- 
ments alternated between 678 and 945 nm,  
with a sample period of 1.26 s at either 
wavelength. 

For impact events B, H, L, Q1 ,  and S, 
the PPR 2.5-mrad field of view was cen- 
tered o n  Jupiter's 0.6-mrad disk (5 ) ,  and the  
data were buffered in the spacecraft com- 
puter memory and read out within 1 day 
(6) .  For the  C, G, and R events, the PPR 
was set up to record data o n  tape simulta- 
neously with the  infrared and; ultraviolet 
spectrometer measurements (7). 

Detection of a n  impact event by the  
PPR depended o n  ( i )  the  time.of the  actual 
impact relative to a fixed observing inter- 
val, defined in mid-June, (i i)  the  brightness 
of the  impact, and (iii) the  amount of stored 
data that could be returned within the  
available downlink communication time. 
Among the  set of memory-buffered obser- 
vations, definite signals were found for H, 
L, and Q 1  (8) (Figs. 1 and 2) .  These events 
were all much shorter than the  observed 
time span (Table 1 ) .  T h e  la noise level at 
945 n m  for all observations was 1.2 data 
numbers ( D N )  after averaging the  two po- 
larization channel signals together without 
smoothing (2 ) .  This is about 0.5% of the  
integrated br~ghtness of Jupiter at 945 nm.  

All of the  events detected rose to max- 
imum signal within 2 s, a t  w h ~ c h  time there 
was a sudden slope change at the  peak 
intensity. All of the  945-11111 measurements 
had a similar shape, with about a 10-s pla- 
teau before falloff. T h e  maximum duration 
of detected l ~ g h t  was 35 s for the  impact of 
fragment L. Data returned from the  G im- 
pact, although sampled less frequently, 
show the  same general behavior as the  oth- 
ers (Fig. 3 ) .  There was a suggestion of sec- 
ondary flashes in the 3 min following the  
main G flash. However, examination of the  
two PPR channels shows a lack of correlat- 
ed signals during this period, and it is un- 
likely that these peaks are real. It should be 
pointed out that there is ~ 1 o  structure in the  
G, H, or L data indicating the  detection of 
separate meteor and f~rehll"phases,  except 
perhaps for the  slope change. 

T h e  678-n~n  signal for Q1 decayed faster 
(Fig. 4) (9).  T h e  brightness curve extracted 
frorn the time-drift images of impact K at 
890 n m  by the Solid State Imaging (SSI) 
instrument o n  Galileo (10) shows a similar 
shape and a duration comparable to our 945- 
n m  data for G, H, and L. T h e  SSI sequence 
of images for impact W at  559 n m  show a 
rise and fall within about 5 s, which is similar 
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to the behavior seen for (21 at 678 nm. part of the  curve, followed by the  "fireball" 
T h e  PPR flashes could represent ( i )  the  phase, the  explosive expansion of hot  ma- 

hot lneteor phase of the fragment's demise, terial after the  lneteor deposited its energy, 
with a duration indicative of the  time for or (iii) only the  fireball phase. Clues to the  
the  glowing trail material to radiate its en- origin of the  light seen by the  PPR can be 
ergy, (i i)  the lneteor phase during the  rising found in the absolute intensities, in the  

Event H 11 
945 nm , ,  

t 1 
1 ' Channel 1 

$ 
340- 

kj ~ M ~ ~ ~ ~ , ~ ~ ~ l ~ p ~ ~ ~ ~ ~ ~ ,  '= 
1 : Channel 2 + 180 DN 

t 

300; I A I 1 I I 

19:31 19:32 19:33 22: 16 22:17 22:18 

Time (UTC on 18 July) Time (UTC on 19 July) 

Fig. 1. Fragment H and L impacts. Raw signal traces for the two orthogonal polarization channels of the 
PPR. Differences in the ambient level of the two channels are the result of electronic drift of the 
zero-radiance level; the dark current restoration procedure normally performed was omitted here to avoid 
filter wheel stepping and consequent loss of time resolution. Offsets have been applied to channel 2 data 
to facilitate comparison. Sample interval is 0.23 s. 

Fig. 2. Fragment Q1 impact. Raw 
signal traces for the two orthogonal 
polarization channels of the PPR for 
both the 678- and 945-nm filters, 
which were viewed alternately. Dif- 
ferences in the ambient level of the 
two polarization channels are the 
result of electronic drift; offsets 
have been applied to facilitate com- 
parison. Sample Interval 1s 1.26 s 
for a given filter. 

Table 1. Gaileo PPR observations. 

Time (UTC on 20 July) 

ratio of intensities a t  different wavelengths, 
and in the  correlation with other data sets. 

T h e  peak absolute signal levels observed 
by the  PPR at 945 n m  represent about 6% 
of the signal from Jupiter itself for the  L 
event. T h e  signal can be modeled by 

where T( t )  is the temperature as a function 
of time t, B(T(t ) )  is the time-dependent 
Planck function, and w(t) is the effective 
solid angle suhtended by the emission. T h e  
angular size and temperature-driven bright- 
ness cannot both be determined uniquely 
from the peak signal. For example, a 
10,000-K meteor with a cross-sectional area 
of 150 km2 (which could be a "pencil" of 2.5 
km by 60 ktn) or a 3000 K fireball of 400 km2 
are equally consistent with tGe data. 

A substantial clue to the  interpretation 
is provided by the 678-nm flux to 945-nm 
flux ratio for Q1. A t  the beak, the  ratio 
indicates a color temperature of 18,000 K, if 
blackbody emission is assumed (Fig. 4) (1 1 ). 
A t  18,000 K, a source area of -5 km2 is 
adequate. T h e  high emission a t  678 n m  
relative to  that a t  945 n m  implies that a hot 
and compact source was responsible for the  
earliest few seconds of the  PPR light curve. 
T h e  sharp drop-off of radiation a t  678 n m  

EventG { 
+++ 945 nm 

+ + 
' 240 + + +  + 1 [++ + + + + + + +  ++++ * + + + + +  
0 

2301 I lo 
1 
- 

L 1 ,  __L_ 

07:32 07:33 07:34 07:35 07:36 
Time (UTC on 18 July) 

Fig. 3. Fragment G impact. Peak signal levels 
obtalned during the repetitive scanning motion 
across Jupiter, with a perlod of 5.3 s. The average 
of the two orthogonal poarizatlon channels of the 
PPR IS shown. 

Frag- Inltlal Observaton Wave- Sgnal Sample 

ment Date flash tlme length max~mumt interval 
tlme" span? (nm) (W ~ m - ~  nm-') (s) 

Note 

n \ I  

B 17 July Not seen 02:22:12-03:03:00 945 - 0.23 Sgna  too weak to be seen. 
C 17 July Not seen - 5.3 Recorded, bpt not played back 
G 18 July 07:33:32 07132:OO-07:40:00 945 2.1 x lo - ' "  5.3 
H 18 July 19:31:58 19:11:24-19:52:12 945 1 . 8 ~  lo - ' "  0.23 
L 19 July 22:16:48 22:09:00-22126124 945 2.6 x lo -15  0.23 ' 
P 20 July Not seen 945 - 0.23 Recorded but not ~ I a y e d  back. 

Signal likely too weak. 
Q 1 20 Julv 20:13:52 20:03:36-20:30:36 945 1.1 ~ 1 0 - l 5  1.26 Two waveenaths alternate. - 

678 3.0 x 10- j5 
R 21 July Not seen 05:34:03-05:44:43 678 - 5.3 Alternate samples played back. 

Signal too weak, or missed. 
S 21 July Not seen 15121 :OO-15:59:25 945 - 0.23 Event shifted out of observed 

period. 

*Converted to equivalent UTC tme for Earth-based observers. %Tme span IS for data returned to Earth. $Signal maximum accounts for noise varance. 

1876 SCIENCE \'OL. 268 30 1UNE 1995 



indicates rapid cooling, as the peak of the 
blackbody radiation shifted to longer wave- 
lengths. This behavior is consistent with 
the brevity of the detection at 292 nm by 
the Galileo Ultraviolet Spectrometer 
(UVS) experiment for impact G (12)  and 
the brief signal at 559 nm measured by the 
SSI for impact W ( 1  0). 

An initial high temperature and small 
solid angle were also suggested for the G 
impact by the ratio of the Galileo UVS 
292-nm flux to the PPR 945-nm flux during 
the rise to maximum signal ( 1  2).  Behavior 
of the Near-Infrared Mapping Spectrometer 
(NIMS) spectra obtained seconds later for 
impact G are consistent with an expanding, 
cooling blackbody source with an initial 
temperature above 5000 K, going down to 
450 K in just over 1 min (13). The atmo- 
spheric pressure levels implied from the 
NIMS methane-band data, when extrapo- 
lated backward to the time of the PPR peak, 
are near 200 mbar, well below where a 
meteor flash would be found. 

If the first few seconds of the PPR flashes 
are from the meteor phase, the impacts 
should resemble large terrestrial meteor 
events; ablation by either terrestrial N2 or 
Jovian Hz would produce a hot vaporized 
layer of impactor material. Terrestrial me- 
teors display a rich spectrum of metallic 
lines corresponding to excitation tempera- 

tures in the range of several thousand 
kelvin (14). Most of these lines are in the 
blue region, with only weak continuum in 
the red and infrared (15). Consequently, we 
expect that the meteor phase would have 
been dim at the PPR-detected wavelengths, 
and at those used by the SSI camera (16). 

It also seems unlikely that the intensity 
of the meteor phase would have so nicely 
merged into that of the subsequent fireball. 
The light curve shapes are similar for four 
events of differing magnitude (Fig. 5 ) .  The 
only indication of a separation is the afore- 
mentioned slope change, which could indi- 
cate termination of the trail or disappear- 
ance below clouds. However, it could also 
arise from development of a new opacity 
source within a cooling fireball. 

The PPR measurements, together with 
those of the other Galileo experiments, im- 
ply a continuous impact radiation event, 
with no clear temporal distinction between 
an impacting meteor flash and subsequent 
fireball. That continuity is suggestive of the 
three-dimensional modeling of the impacts 
by Crawford et al. (4), who imply that the 
meteor entry above the level of obscuring 
clouds would be followed by immediate ex- 
pansion of the upper portion of the entry 
channel into a hot, "line charge" fireball, 
aided perhaps by subsequent explosion of 
material from further down the channel. In 
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this comparison, the sharp initial rise of the 
PPR data may correspond to the fast passage 
of the fragment through the visible part of 
the atmosphere. The rise would be caused by 
a growing solid angle of the entry tube and 
the increasing conversion of the fragment's 
kinetic energy into heat. The abrupt cessa- 
tion of the intensity rise is ascribed to either 
the bolide passing below a cloud layer or to 
final breakup of the body. The following part 
of the PPR curve, arising from a prompt 
fireball phenomenon, is simply the contribu- 
tion of two competing terms: a cooling 
Planck emission and a growing solid angle, as 
in Eq. 1. The balance of these terms produc- 
es the flat part of the curve at 945 nm, and 
the downward acceleration of the signal in- 
dicates dominance of the cooling factor. 

It is not necessary, in spite of the above 
arguments, to conclude from the Crawford 
e t  al. model prediction (4) that PPR detect- 
ed the meteor phase emission. Comparison 
of PPR data to terrestrial telescopic data 
leads one away from that conclusion. Sen- 
sitive near-infrared (-2 p.m) light curves of 
several impacts from various observatories 
typically show two low-amplitude events 
before the main infrared brightening ( 1  7- 
20). One interpretation of these three 
events is that they arose, respectively, from 
(i) the bolide, (ii) the plume emerging over 
the horizon, and (iii) the thermalization of 
the kinetic energy of the particles upon 
re-entry into the upper atmosphere. 

The prospect that the initial bolide could 
be seen from Earth, either directly at the 
highest altitudes or from light refracted 
around the limb, is intriguing. A comparison 
of the timing of these events with Galileo 
observations is very instructive. For the G 
impact, the Anglo-Australian Telescope 
spectrometer (21 ) observed a faint pointlike 
source on the limb at 7:32:58,39 s ahead of 
the PPR time. The first observation of the H 
impact by Calar Alto was 13 s before the 
PPR signal. For the L impact, both Calar 
Alto (17) and Pic-du-Midi (18) measured 
the first of these small "precursor" signals 13 
to 16 s ahead of the PPR detection (Table 
1). These comparisons are all consistent with 
the initial precursor flashes being faint sig- 
nals observable from Earth several hundred 
kilometers above the point where the follow- 
ing PPR signal originates' near a level of 
several millibars, based on the 200-mbar lev- 
el implied by extrapolatibd"of the NIMS G 
data and a vertical motion of 2 s x 60 km 
s-' x cos(45"). They are also consistent 
with the initial PPR signal rise being part of 
the bolide phase, making the transition to 
the fireball phase. A similar argument can be 
made by comparing the timing of the initial 
SSI K data with the precursor observed at 
Okayama (20). For the G event, this inter- 
pretation implies that the sensitive Anglo- 
Australian Telescope detection (21)  corre- 
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sponds to bolide emission at very high alti­
tudes. It also implies that the 888-nm filter 
exposure made by the Hubble Space Tele­
scope (HST) Wide Field Planetary Camera 
between 7:33:15 and 7:33:45 (22) detected 
the bolide phase. The HST integrated 
brightness was much less than that measured 
by the PPR at nearly the same wavelength 
within the same time frame, implying that 
most of the radiation detected by the PPR 
originated below the HST-observed limb 
(23). Obviously, the most complete picture 
of the first few seconds of the impact events 
will arise from detailed comparisons among 
the PPR and other Galileo observations and 
a large suite of terrestrial measurements at 
these and later times, together with models 
of the impact phenomenon. 

We can readily determine an upper limit 
to the flux reflected from the closest Ga­
lilean satellite, Io, for the initial flash. The 
peak flux density for fragment L observed at 
a distance of 1.6 astronomical units (AU) by 
the PPR at 945 nm wavelength was 2.7 X 
10"15 W cm"2 nm"1 (Fig. 5). Scaling that 
value to Io's distance from Jupiter's atmo­
sphere (3.52 X 105 km), we get 1.26 X 10"9 

W cm - 2 nm - 1 , assuming isotropic emission 
from the impact point. Dividing this by the 
solar flux density at Jupiter at 945 nm (3.03 
X IO"6 W cm"2 nm"1) (24), we obtain 4.15 
X 10~4. This maximum brightening that 
might be expected for Io, 0.04% of Io's illu­
minated flux, would be difficult to detect 
and is consistent with the apparent lack of 
such reflected impact "flashes." 

Much of the energy deposition may be 
hidden from view for deeper penetrating 
fragments, making mass estimation difficult 
or impossible. However, we can state a rel­
ative brightness on the basis of the 945-nm 
data. Using the peak signal values, we find 
that L, G, H, and Ql had relative bright­
nesses of 2.4:2.1:1.6:1.0. The HST obser­
vations of the impact sites (22) provide a 
qualitative hierarchy in which the G, K, 
and L impact sites had the highest associ­
ated energy because of their large ejecta, 
central dark region more than 10,000 km in 
diameter, and multiple impact waves. The 
H impact site had a central dark region 
between 4000 and 8000 km in size, medium 
ejecta, and a single impact wave, and Ql 
had a central dark region less than 3000 km 
with no ejecta and no observed impact 
wave. These are consistent with the order­
ing in energy that can be established with 
the PPR (and other Galileo) measurements. 
Further Earth-based measurements of com­
parative phenomena, such as amount of 
NH3 gas uplifted, column abundance of par­
ticulates generated, or amplitude of temper­
ature perturbation, can provide significant 
additional constraints on the incoming 
fragment energy. On the other hand, pre-
impact HST observations of the individual 

cometary fragments gave relative bright­
nesses (25) for L, G, H, and Ql , of 1.00, 
1.33, 0.80, and 1.40, respectively. These 
relative figures are in disagreement with our 
ordering and imply that a significant com­
ponent of the observed comet brightness 
was contributed by particles that did not 
contribute substantially to the kinetic ener­
gy of the incoming fragment. 
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Outburst of Jupiter's Synchrotron Radiation After 
the Impact of Comet Shoemaker-Levy 9 
lmke de Pater," C. Heiles, M. Wong, R. J. Maddalena, 
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Jupiter's nonthermal microwave emission, as measured by a global network of 11 radio 
telescopes, increased dramatically during the Shoemaker-Levy 9 impacts. The increase 
was wavelength-dependent, varying from -10 percent at 70 to 90 centimeters to -45 
percent at 6 and 36 centimeters. The radio spectrum hardened (flattened toward shorter 
wavelengths) considerably during the week of impacts and continued to harden afterward. 
After the week of cometary impacts, the flux density began to subside at all wavelengths 
and was still declining 3 months later. Very Large Array and Australia Telescope images 
of the brightness distribution showed the enhancement to be localized in longitude and 
concentrated near the magnetic equator. The evidence therefore suggests that the in- 
crease in flux density was caused by a change in the resident particle population, for 
example, through an energization or spatial redistribution of the emitting particles. 

A worldnride network of radio telescopes 
was organized to  observe Jupiter's flux den- 
sity a t  microwave frequencies before, dur- 
ing, and after comet Shoemaker-Levy 9 
(SL9) collided with the  planet in July 1994. 
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Our  goal was to monitor Jupiter's micro- 
wave emission and to search for changes in 
the  synchrotron radiation emitted by rela- 
tivistic electrons (-1 to 300 MeV) trapped 
in Jupiter's inner magnetosphere. 

T h e  mechanism that produces the  plan- 
et's steady synchrotron radiation is well un- 
derstood, and the  observed radiation char- 
acteristics were used in the  early 1960s to 
derive Jupiter's magnetic field configuration 
and electron distributions (1 ). Jupiter's ra- 
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flux density has been reported lllore than 
olnce (1 ), it has never been confirmed (3).  
During a jovian rotation, the flux density 
displays a sinusoidal variation in amplitude, 
commonly referred to as the "beaming 
curve" (Fig. 1 ) .  T h e  peak-to-peak ampli- 
tude in  the  beaming curve is -15%. T h e  
variation with jovian rotation of all radia- 
tion characteristics ( in  particular, the polar- 
ized components) implied a lnisalignnlent 
between the  magnetic and rotational axes 
of - 10" and a confinement of most radiat- 
ing electrons to the  planet's magnetic equa- 
tor (1 ). 

It is usually assumed that electrons, on 

average, diffuse inward in Jupiter's magne- 
tosphere while the  first adiabatic invariant 
is conserved. Hence, the   articles gain en- - 
ergy in the  diffusion process, and they lose it 
by synchrotron radiation. As the  electrons 
move through the  magnetosphere, they in- 
teract with solid material such as moonlets 
and dust, electromagnetic waves, and neu- 
tral and charged particles. All interactions 
usuallv result either in a loss of the  electron 
or in a reduction in its energy (4) .  

Predictions before the  eL7ent had con- 
centrated o n  the  interaction of the radiat- 
ing electrons with cometary dust (5, 6) .  It 
was suggested that the  radio emission would 
decrease as a result of energy degradation by 
cometary dust. This decrease would be most 
apparent a t  low frequencies. T h e  highlight 
of the  radio observations instead was a dra- 
matic increase in  the radio flux density 
during the  6 days of cometary bombard- 
ment.  T h e  increase in radio brightness was 
monotonic at a roughly constant rate dur- 
ing the  week of impacts. Data taken during 
a 3-month wer~od after the  week of co- 
metary impacts showed a steady decline in 
the radio flux density; by the  end of Octo- 
ber 1994, equilibrium had not  yet been 
reached at the short wavelengths. " 

W e  observed Jupiter's radio emission be- 
tween June and October 1994, with 11 
different radio telescopes (single dishes and 
arrays of telescopes) (Table 1 ) .  W e  restrict- 
ed our attention to  total flux densities ob- 
tained at wavelengths between 6 and 90 cm 
(7). W e  calibrated all data against 3C286, 
either directly, or indirectly by means of a 
nearby secondary calibrator source 18). Al- 
though we also s'earched for burstlike emis- 
sion (time scales varying from microseconds , " 

to seconds), n o  obvious activity or "radio 
bursts" could be associated with the  times of 
impact events. 

Wi th  the  single dish telescopes, we de- 
termined the  total flux density S of the  
planet either by scanning the planet in one 
( N a n ~ a y )  or two (orthogonal) directions 
(Green Bank, Effelsberg, and Parkes) or by 
doing on-off scans (DSN and NRL) (see 
Table 1 for telescope abbrevations). Be- 
cause the  spatial extent of Jupiter's radio 

5 I , , , . , , , , 8 , _ .-, 
0' O 100 200 300 
z Central meridian longitude (System Ill) 

Fig. 1. A prempact beaming curve (wavelength, 
20 cm) of Jupiter's synchrotron rad~ation. The 
data were taken w~th the 140-foot NRAO tele- 
scope at Green Bank. Superposed is a best f~t line 
after Eq.  1 
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