ticularly advantageous for in vivo studies in
which the rapid activation of a gene is
required, because, in contrast to the au-
thentic tTA system, the kinetics of induc-
tion does not depend on the biological half-
life of the effector.
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Construction of a Soluble Adenylyl Cyclase
Activated by G_« and Forskolin

Wei-den Tang* and Alfred G. Gilman

A soluble adenylyl cyclase was constructed by linkage of portions of the cytosolic
domains of the mammalian type | and type Il enzymes. The soluble enzyme was
stimulated by both forskolin and the « subunit of the heterotrimeric guanine nucleotide—
binding protein (G protein) G, (G,a). Expression of the construct complemented the
catabolic defect in a strain of Escherichia coli that is deficient in adenylyl cyclase
activity. The active, approximately 60-kilodalton enzyme accumulated in the cytoplas-
mic fraction of E. coli to yield activities in excess of 1 nanomole per minute per milligram
of protein. The two sets of transmembrane helices of mammalian adenylyl cyclases are
thus not necessary for the catalytic or the most characteristic regulatory activities of
the enzyme. This system may be useful for both genetic and biochemical analysis of

G protein-regulated adenylyl cyclases.

The structures of G protein—regulated ad-
enylyl cyclases are complex, consisting of
two intensely hydrophobic domains (M,
and M,), each hypothesized to contain six
transmembrane helices, and two ~40-kD
cytosolic domains (C; and C,). The C, and
C, domains contain sequences (C,, and
C,,) that are similar to each other, to the
corresponding regions of related adenylyl
cyclases, and to the catalytic domains of
membrane-bound and soluble guanylyl cy-
clases (I, 2). Analysis of a series of trunca-
tion and alanine-scanning mutants of mam-
malian adenylyl cyclases indicates that both
C,, and C,, (but not C,, and C,) are
necessary for catalytic activity (3, 4). How-
ever, by analogy with the guanylyl cyclases,
the hydrophobic domains are thought not to
be so required. Membrane-bound adenylyl
cyclases are expressed in small amounts, and
the enzymes are labile and difficult to ma-
nipulate in detergent-containing solutions.
We have thus attempted to construct a sol-
uble adenylyl cyclase that retains regulatory
properties of interest and that is amenable to
both biochemical and genetic analysis.
Concurrent expression of the NH,-ter-

minal half of type I adenylyl cyclase and the
COOH-terminal half of type II adenylyl
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cyclase results in the formation of a nonco-
valent chimera that remains sensitive to
both G and forskolin, despite extremely
low basal activity (4). We have thus ligated
complementary DNAs (cDNAs) that en-
code C,, from type [ adenylyl cyclase and
C,, from type Il adenylyl cyclase with short
linkers between them, resulting in con-
structs designated IC,IIC,-L,, IC|IIC,-L;,
and ICIIC,-L, (Fig. 1A) (5). To investi-
gate whether these constructs encode func-
tional adenylyl cyclases, we tested comple-
mentation of the catabolic defect in E. coli
Acya TP2000, which lacks adenylyl cyclase
activity (6). This deficient bacterial strain
cannot use maltose as a carbon source; col-
onies thus fail to turn red on McConkey
agar and do not grow on minimal medium
(7). To activate adenylyl cyclase in E. coli,
we coexpressed the cyclase constructs with
either wild-type G, or a mutant G (in
which GIn??7 is replaced with Leu; desig-
nated Go*) that is deficient in guanosine
triphosphatase (GTPase) activity and is
thus constitutively active (8). Escherichia
coli TP2000 expressing either G .o or G a*
remained pale yellow on McConkey agar
supplemented with maltose and failed to
grow on minimal medium (M63 medium
containing arginine and maltose) (Fig. 1B).
However, bacteria expressing G a* and any
of the three chimeric adenylyl cyclase con-
structs turned red on McConkey agar and
grew on minimal medium (Fig. 1B). (Wild-
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type E. coli turn red in about half the time
required for the chimeric constructs.) Cor-
rection of the catabolic defect was also ev-
ident when wild-type G,a was expressed
with IC,IIC,-L; or ICIIC,-Ls, but longer
times were required. There was evidence of
a small amount of adenosine 3’,5'-mono-
phosphate (cAMP) synthesis when con-
struct IIC, was coexpressed with G a*; no
such effect was apparent with 1C, (Fig. 1B).
Similar ligation of C,, and C,, from type |
adenylyl cyclase failed to produce a func-
tional enzyme by these criteria (9).

We also tested four mutants of G a that
are altered in positions corresponding to the
a3-B5 and a4-B6 loops of Ga and G, a
and the a3 helix (10, 11); these mutants
have a reduced ability to activate adenylyl
cyclase (12). The cDNAs encoding these
proteins were also altered to substitute Cys
for Arg’®', a mutation that also inhibits
GTPase activity and activates the a sub-
unit. We transferred these cDNAs into the
expression vector and tested their ability to
activate IC/1IC,-L; in E. coli (9). As a
control, E. coli Acya turned red on McCon-
key agar when transformed with vectors
encoding G.a(Arg?®!'—Cys) and IC,IIC,-
L,. Under the same conditions, G with a
mutation in the a3 helix failed to show
activity, whereas the other three mutants
were indistinguishable from the control
protein. These results correlate well with
those obtained by transient expression of
these proteins in HEK 293 cells.

We examined adenylyl cyclase activity
in vitro in 150,000g supernatant fractions
from E. coli TP2000 transformed with the
various constructs (13). The soluble frac-
tion from cells containing a control plasmid
had no detectable adenylyl cyclase activity
(Fig. 1C). In contrast, supernatants from
cells expressing IC,11C,-L,, IC,|1IC,-L;, or
IC,1IC,-L; showed basal adenylyl cyclase
activity (~2 pmol/min per milligram of pro-
tein) that was activated by 200 nM G«
bound to guanosine 5'-O-(3-thiotriphos-
phate) (GTP-y-S) (50-fold), 100 uM for-
skolin (150- to 200-fold), or a combination
of the two (600-fold). The combination of
Ca’* and calmodulin had no detectable
effect on activity, and lysates from cells
expressing either IC, or IIC, showed little
adenylyl cyclase activity.

Although forskolin appeared not to ac-
tivate adenylyl cyclase in vivo when present
alone, a synergistic interaction between for-
skolin and wild-type G a was evident with
constructs IC,IIC,-L; or IC,IIC,-L,s (Fig.
1B). In view of the stimulatory effects of
forskolin in vitro, these modest effects of
the diterpene in vivo presumably result
from its failure to reach sufficiently high
intracellular concentrations. To test this
hypothesis, we attempted to increase the
accumulation of cAMP intracellularly by
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constructing a mutant deficient in cyclic
nucleotide phosphodiesterase (cpd™). An
E. coli strain lacking both adenylyl cyclase
and the phosphodiesterase grew on minimal
medium containing one-tenth the concen-
tration of cAMP required to allow growth
of the corresponding strain that expressed
cyclic nucleotide phosphodiesterase (9). We

treated cells with polymyxin B nanopeptide,
which integrates into the outer membrane
of Gram-negative bacteria and forms a pore
structure, thereby increasing their perme-
ability to hydrophobic compounds by up to
300-fold (14). Escherichia coli Acya, cpd™ did
not grow on maltose minimal medium in the
presence of forskolin (10 uM) and polymyx-
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Fig. 1. Properties of soluble type I-type Il adenylyl cyclase chimeras expressed in E. coli. (A) A model of
mammalian adenylyl cyclase (left) and the various chimeras between type | and type Il adenylyl cyclases
(right); the linker sequences are also shown (A, Ala; G, Gly; M, Met; and P, Pro). IC, , includes residues 271
to 484 of type | adenylyl cyclase; IIC,, includes residues 821 to 1090 of type Il adenylyl cyclase. No
sequences from any of the putative transmembrane spans of either enzyme are included. (B) Phenotypic
complementation. Escherichia coli TP2000 bacteria were transformed with two compatible plasmids,
one for the expression of G.a and the other for expression of the adenylyl cyclase constructs. Transfor-
mants were selected for resistance to carbenicillin and kanamycin, and bacteria were cultured on either
McConkey or M63 agar containing 0.4% maltose, 50 pM carbenicillin, 50 uM kanamycin, and 100 uM
isopropyl-B-D-thiogalactopyranoside. Cells were grown at 30°C for the indicated times. Forskolin (5 ul,
10 mM) was spotted on the plates where indicated (+Fsk) before addition of transformants. (C) Enzyme
activity of the chimeras. Adenylyl cyclase activities of supernatant fractions of lysates (20 wg) from E. coli
containing the indicated plasmids were assayed with 10 mM MgClI, at 30°C for 30 min. Assays also
contained 200 nM GTP-y-S-G a (Gga), 100 uM forskolin (Fsk), or 100 uM CaCl, plus 2 wM calmodulin
(Ca?* + CaM), as indicated. (D) Immunoblot analysis with antiserum C2-1077 of 150,000g supernatants
from lysates of E. coli containing the indicated plasmids (30). Immunoreactive proteins of 60, 36, 34, 32,
and 29 kD (arrows) as well as the positions of molecular size standards (left) are indicated. Data shown are
representative of at least two experiments.
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in B nanopeptide (33 pg/ml). However, the
bacteria did grow under these conditions if
they also expressed the adenylyl cyclase con-
struct IC,IIC,-L,. This observation supports
the hypothesis that the ineffectiveness of
forskolin in vivo results from its poor per-
meability through the outer membrane of E.
coli.

The expected 60-kD protein was detect-
ed in appropriate E. coli supernatants with
an antiserum to the COOH-terminus of
type 11 adenylyl cyclase (antiserum
C2-1077) (Fig. 1D), although the signal
was not strong. The appropriate 29-kD sol-
uble protein was present in cells expressing
IIC,. We also detected 32-, 34-, and 36-kD
proteins in cells expressing IC,IIC,-L;,
ICIIC,-L;, or IC/IIC,-Lg, respectively.
Other smaller proteins were present in ex-
tracts from all cells containing 11C, cDNA.
These proteins may arise from proteolysis or
initiation of translation from downstream
sites.
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Adenylyl cyclase activity in 150,000
supernatants from cells expressing 1C,11C,-
L, was stimulated by addition of either for-
skolin (Fig. 2A) or GTP-y-S-G.a (Fig. 2B).
The median effective concentration (ECs,)
for forskolin was ~7 wM. A forskolin ana-
log, 1,9-dideoxyforskolin, which does not
activate mammalian adenylyl cyclases (15),
also failed to stimulate this enzyme. The
EC,, for activation of IC11C,-L; by GTP-
v-S-Goo was ~1 puM, a value 20 to 50
times greater than that observed with type I
or type II adenylyl cyclase. However, the
maximal stimulatory effect of the G protein
« subunit exceeded that of forskolin (Fig.
2B). The stimulatory effects of minimally
effective concentrations of GTP-y-S-G.a
and forskolin were synergistic (Fig. 2C),
which is also characteristic of several mam-
malian adenylyl cyclases (16). When
IC,1IC,-L; was activated with forskolin or
GTP-y-S-G,a, values of the Michaelis con-
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Fig. 2. Enzymatic activity of IC,1IC,-Ly. (A) Activation of soluble adenylyl cyclase by forskolin (Fsk), but not
by 1,9-dideoxyforskolin (1,9-ddFsk). (B) Activation by GTP-y-S-Gga. (C) Synergistic activation by GTP-
v-S-Gga and forskolin. The concentration of GTP-y-S-G a was 200 nM. Sum (Fsk + Gga) is the sum of
adenylyl cyclase activities observed in the presence of forskolin or GTP-y-S-Gga alone; Fsk + Gga is
adenylyl cyclase activity observed in the presence of both GTP-y-S-Gga and forskolin. (D) Determination
of K,,, values for ATP. The concentrations of forskolin and GTP-y-S-G,a were 10 uM and 200 nM,
respectively. (E) Effect of 2'-deoxy-3'-AMP (2'd3’AMP). The adenylyl cyclase activity of a supernatant
fraction (20 wg) from E. coli expressing IC,lIC,-L; was assayed at 30°C for 30 min in the presence of 10
wM forskolin (O), 200 NnM GTP-y-S-G.a (@), or forskolin plus GTP-y-S-G.a (1); control activities for these
conditions were 270, 95, and 970 pmol/min per milligram of protein, respectively. (Inset) Activity was
assayed in the presence of 10 wM forskolin. Data are representative of at least two experiments.
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(ATP) were 0.44 and 0.11 mM, respectively
(Fig. 2D). Addition of GTP-y-S-G « in the
presence of forskolin did not change the
K,,. Synergistic activation of the enzyme
was thus not attributable to alteration of
apparent substrate affinity.

Forskolin regulates the functions of sev-
eral intrinsic membrane proteins, including
adenylyl cyclases (17), glucose transporters
(18, 19), voltage-gated K* channels (20),
nicotinic cholinergic receptors (21), a
y-aminobutyric acid receptor (22), and P
glycoproteins (23, 24). These proteins share
no obvious amino acid sequence similarity.
However, all have one or more hydrophobic
domains predicted to include four or six
transmembrane helices, and forskolin is
highly lipophilic. Attempts to map forsko-
lin binding sites have implicated the trans-
membrane helices or residues immediately
adjacent to these domains (25, 26). We
were thus surprised to detect activation of
the IC1IC, constructs by forskolin. It is
possible that the interaction of forskolin
with adenylyl cyclase differs from that with
other proteins. Although forskolin activates
adenylyl cyclases, it inhibits or blocks the
pore conductivity of the other forskolin-
regulated proteins.

The G protein By subunit complex (to 1
uM) and myristoylated GTP-y-S-G,;ax (2
M) had little effect on the basal or stim-
ulated activities of 1C1IC,-L; (9); MnCl,
(5 mM) inhibited the activated enzyme (50
to 80%). Forskolin-activated 1C,11C,-L,
was inhibited noncompetitively by 2’-de-
oxy-3'-AMP (a so-called P-site inhibitor)
(Fig. 2E). The enzyme was most sensitive to
inhibition by the P-site analog when it was
maximally stimulated by both forskolin and
GTP-y-S-G,a. These properties are char-
acteristic of P-site inhibition of mammalian
adenylyl cyclases (27, 28).

A supernatant containing 1C1IC,-L,
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Fig. 3. Superdex 75 gel-filtration chromatography
of an extract containing IC,IC,-L (37). Molecular
size markers are thyroglobulin (670 kD), y-globulin
(158 kD), chicken ovalbumin (44 kD), and horse
myoglobin (17 kD). Total activity was 1.02 nmol/
min per milliliter and recovery was 71%. Data are
representative of two experiments.
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was subjected to gel filtration through Phar-
macia Superdex 75; a major peak of ade-
nylyl cyclase activity consistent with a glob-
ular 60-kD protein was observed, as well as
a minor peak consistent with a protein of
about twice the size (Fig. 3). The active
enzyme thus appears to migrate as a mono-
mer, although a small fraction may be
present as dimers. The 60-kD immunoreac-
tive band (Fig. 1D) was present within the
major peak of adenylyl cyclase activity,
whereas the 27- and 34-kD bands were not.
Proteolysis was evident in these extracts;
further chromatography of the material
shown in Fig. 3 on a Pharmacia Mono QQ
column revealed multiple peaks of activity,
and only a fraction of the active enzyme was
recognized by antiserum C2-1077 (directed
against the COOH-terminus). This expres-
sion system and the resulting protein should
facilitate genetic, biochemical, and, per-
haps, structural analysis of this complex
group of enzymes (29).
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Common Mechanisms of Visual Imagery
and Perception

Alumit Ishai* and Dov Sagi

Detection of a visual target can be facilitated by flanking visual masks. A similar en-
hancement in detection thresholds was obtained when observers imagined the previously
perceived masks. Imagery-induced facilitation was detected for as long as 5 minutes after
observation of the masks by the targeted eye. These results indicated the existence of
a low-level (monocular) memory that stores the sensory trace for several minutes and
enables reactivation of early representations by higher processes. This memory, with its
iconic nature, may subserve the interface between mental images and percepts.

Visual imagery is the invention or recre-
ation of a perceptual experience in the ab-
sence of retinal input. Brain imaging studies
implicate activity in cortical visual areas
during visual imagery (1, 2), yet the neural
mechanisms that subserve “seeing with the
mind’s eye” are controversial (3, 4). The
degree to which the same neural represen-
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tations are involved in both visual imagery
and visual perception is unclear. Earlier
studies have shown that visual imagery in-
terferes with perception (Perky effect) (5).
Visual imagery can facilitate letter detec-
tion by increasing expectation (6), yet there
is no evidence for direct facilitatory inter-
actions between imagery and perception. In
order to test whether visual imagery can
induce a facilitatory effect on visual percep-
tion, we used a lateral masking detection
paradigm (7, 8), in which human observers



