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Fig. 4. Decay of the normalized SHG coefficient
d(t)/d) = [/(t)/10)]'/? as a function of time for
PI-1. This experiment was done on the same
sample studied in Fig. 3 after the 1000-hour
decay experiment shown in that experiment was
completed.

probably results from the stronger coupling
of the orientational motion of the NLO-
chromophore in both PI-1 and PI-2 to the
polymer backbone than occurs for the side-
chain system PI-3. Rearrangement of the
chromophores in PI-1 and PI-2 thus re-
quires correlated motion of a substantial
region of the polyimide backbone.

A poled PI-1 sample was maintained at
225°C for 1000 hours while monitoring the
orientational decay (Fig. 3). After a de-
crease of ~7% during the first 10 hours, no
further measurable change occurred over a
period of 1000 hours. Similar long-term
stability, also shown in Fig. 3, was observed
for P1-2 held at 170°C. For the side-chain
system containing a flexible tether group
(PI-3), this kind of orientational stability
was only observed for temperatures up to
100°C. Figure 4 shows the impressive short-
term stability of PI-1. Here the polyimide is
ramped up in temperature every 2000 s. At
300°C, the polymer loses only ~15% of its
nonlinearity over this time increment,
which is typical of device processing times.

This class of polymers can meet the se-
vere operating and processing temperature
requirements for application of these poly-
mers in integrated optoelectronic devices.
With recent advances in identifying chro-
mophores with large optical nonlinearities
(16) and in improving chromophore ther-
mal stability (5), it should now be possible
to produce thermally stable NLO polymer
systems with large electrooptic coefficients.
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Plant Growth-Rate Dependence of Detrital
Carbon Storage in Ecosystems

Just Cebrian* and Carlos M. Duarte

Detrital carbon accumulation accounts for most of an ecosystem’s capacity to store
organic carbon because the carbon contained as plant detritus exceeds that stored in
living plants by about threefold. A comparative analysis of the mass and turnover of detrital
carbon in ecosystems demonstrates that these properties are strongly related to the
turnover rate of the dominant primary producers and are poorly related to ecosystem
primary production. These results contribute to an understanding of the factors that
control carbon storage in ecosystems and the role of carbon storage in the global carbon

budget.

The assessment of factors that control C
storage in ecosystems (I1-3) is essential for
determining the role of vegetation in the
global C budget (4, 5). Carbon storage in
ecosystems is accounted for mostly by the
detrital C mass, which amounts to about
threefold that accounted for in living plant
tissues (3, 4). Hence, knowledge of the
factors that control the size and turnover of
the detrital C pool in ecosystems should
help elucidate the processes that control C
sinks in the global C budget (5).

In this report we use a broad-scale com-
parison from published values to show that
even though detrital C flux is strongly con-
trolled by ecosystem primary production,
neither one is strongly related to the mass
and turnover of the detrital C pool. We
then demonstrate that plant turnover rate
explains a major fraction of the variance in
detrital C mass and turnover among ecosys-
tems. We compiled data from reports on
aboveground biomass and primary produc-
tion and the mass and production of detrital
C (6) from a broad range of ecosystems
(7-11).

Carbon flux into the detrital pool was
strongly and linearly related to primary pro-
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duction (Fig. 1). This linear relation ap-
plied both to individual ecosystem types
and to all the types grouped together (12).
On average ~56% of primary production
enters the detrital pool, and, with the ex-
ception of grasslands, more productive eco-
systems yield a correspondingly higher C
flow into the detrital pool. Our results sup-
port the general findings that litterfall rates
are higher in more productive forests (13)
and that phytoplanktonic primary produc-
tion is positively correlated to phytoplank-
ton sedimentation rates (14).

Detrital C mass was poorly related to
both primary production and C flux into
the detrital pool (Fig. 2), both of them
explaining only ~10% of the variation in
detrital C mass among ecosystems. The C
mass of the detrital pool varied by about
three orders of magnitude for similar val-
ues of C flux into this pool (Fig. 2B). The
differences in detrital C mass among eco-
systems were instead strongly correlated to
the plant turnover rate (Fig. 3A); the
tendency toward reduced detrital C mass
with increasing plant growth rate account-
ed for 53% of the variance in detrital C
mass.

The observations that detrital C mass is
relatively independent of C flux into the
detrital pool (Fig. 2B), whereas it declines
as plant growth rate increases (Fig. 3A)
imply that the loss rate of detrital C
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Fig. 1. The relation between C flux into the detrital
pool and primary production (both in units of
grams of C per square meter per day). The solid
line depicts the regression equation fitted to the
data. Symbols represent (*) plankton, (@) benthic
microalgae, (A) macroalgal beds, (A) freshwater
macrophyte meadows, (M) seagrass meadows,
(CJ) grasslands, and (O) forests.

should increase with increasing plant
growth rate. The net result of these pro-
cesses is a significant tendency toward an
increase in the turnover rate of the detrital
C pool with increasing plant growth rate
(Fig. 3B). This finding is consistent with
the fast decomposition rates reported for
the ‘nutrient-rich detritus produced by
fast-growing plants (15). Export of detrital
C tends to be greater in aquatic ecosys-
tems than in terrestrial ecosystems, but it
typically represents only a small fraction of
the C loss from the detrital pool (9, 10);
hence, export of detrital C cannot have a
significant effect on the observed patterns.

Our results indicate that plant turnover
rate controls the size and turnover of the
detrital C pool, thereby setting the capac-
ity of an ecosystem to store C. Hence,
ecosystems dominated by slow-growing
plants accumulate large, slowly decompos-
ing detrital pools which act as C sinks
both on a local and global scale (1, 2). In
contrast, C accumulation in the detrital
pool of ecosystems dominated by fast-
growing plants is much smaller. The mag-
nitudes of primary production and the flux
of C entering the detrital compartment
reveal little about an ecosystem’s capacity
to store detrital C (Fig. 2).

The relation between detrital C mass
and plant turnover rate described here
provides a basis to assess the response of
the detrital C pool to global changes in
plant turnover rate. Several lines of evi-
dence suggest that global changes in land
use and climate may be conducive to a
global increase in plant turnover rate (I,
3, 16-20). Coastal eutrophication has
been shown to cause a shift from slow-
growing, thick macroalgae and seagrasses
to fast-growing phytoplankton and mac-
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Fig. 2. The relation between detrital C mass
(grams of C per square meter) and (A) primary
production (grams of C per square meter per day),
and (B) the C flux into the detrital pool (grams of C
per square meter per day). The detrital C mass is
poorly, although significantly (P < 0.05), correlat-
ed to the primary production (2 = 0.1, where r is
the Pearson correlation coefficient) and to the C
flux into the detrital pool (r? = 0.13). Symbols as in
Fig. 1.

roalgae (16). Deforestation replaces slow-
growing plants (that is, forests) by faster
growing (that is, grasslands and agricultur-
al crops) plants (I, 3, 17). Grasslands are
expected to expand through the north-
eastern American territories, which are
presently colonized by mixed conifer-
hardwood forests, in response to an atmo-
spheric warming of 1.5° to 4.5°C by the
end of the century (18). The turnover rate
of tropical forests has increased since the
1950s (19), and higher atmospheric CO,
concentrations may lead to a further in-
crease in plant turnover rate (20). Our
results suggest that these trends toward a
global increase in plant turnover rate
could result in a net decline in ecosystem
C storage from losses of soil C. This pre-
diction is in agreement with results from
simulation models that combine the ef-
fects of change in climate, atmospheric
composition, and the global spread of ag-
ricultural crops and range lands (1).

Our prediction of the effect of global
changes in plant turnover rate on the size of
the detrital C pool remains, however, qual-
itative because our data do not represent a
random sample of the different ecosystems
on Earth. Furthermore, the patterns de-
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Fig. 3. (A) The relation between detrital C mass
(Cgeritar 9rams of C per square meter) and plant
turnover rate [PP/B, per day, where PP is primary
production (grams of C per square meter per day)
and B is plant biomass (grams of C)] for different
ecosystems. The solid line represents the regres-
sion equation fitted to the data: 10gC 4yt = (0.43
+ 0.24) — (0.67 = 0.08)log PP/B (with r? = 0.53,
n = 53, F test, P < 0.00001). (B) The relation
between detrital C turnover rate (TC ;. PEr day)
and plant turnover rate for different ecosystems.
The solid line represents the regression equation
fitted to the data: 10gTC g = (—0.9 = 0.2) +
(0.64 = 0.08)log PP/B (with r? = 0.52,n = 53, F
test, P < 0.00001). Symbols as in Fig. 1.

scribed here represent empirical relations
that may be blurred by feedback effects
associated with simultaneous changes in
growth conditions in response to changing
global temperature and atmospheric CO,
concentration (21). Yet, we demonstrate
that the size and turnover rate of the de-
trital C pool are closely related to the turn-
over rate of the plant community and are
poorly related to ecosystem primary produc-
tion. Thus, the mechanisms linking the dy-
namics of the detrital C pool to plant turn-
over rate must be investigated to improve
our capacity to model C storage in ecosys-
tems and to evaluate its role in the global C
budget.
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