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Extreme Discordant Sib Pairs
for Mapping Quantitative Trait
Loci in Humans
Neil Risch* and Heping Zhang

Analysis of differences between siblings (sib pair analysis) is a standard method of genetic
linkage analysis for mapping quantitative trait loci, such as those contributing to hyper-
tension and obesity, in humans. In traditional designs, pairs are selected at random or with
one sib having an extreme trait value. The majority of such pairs provide little power to
detect linkage; only pairs that are concordant for high values, low values, or extremely
discordant pairs (for example, one in the top 10 percent and the other in the bottom 10
percent of the distribution) provide substantial power. Focus on discordant pairs can
reduce the amount of genotyping necessary over conventional designs by 10- to 40 -fold.

The power of modern molecular methods  tibility genes for non-Mendelian disorders
for identifying Mendelian disease genes,  (such as diabetes, multiple sclerosis, and
such as those for cystic fibrosis, Huntington ~ hypertension) remains to be seen. A major
disease, and neurofibromatosis, has been  problem in searching for such loci is the
amply demonstrated. The feasibility of  lack of the simple one-to-one correspon-
these methods for identification of suscep-  dence between gene effect (genotype) and
N. Risch was in the Department of Epidemiology and disease outcome (phenotype) that is typlcal
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appears from human studies that IDDM
may be equally complex (2).

An important class of traits for study in
human genetics are quantitative ones, in
which the phenotype is measured on a con-
tinuous scale. These may either directly
underlie disease classification (such as
blood pressure and the associated disease,
hypertension; or weight and obesity) or may
be considered as a risk factor for a disease
state (such as cholesterol and ischemic
heart disease). One approach is to identify
quantitative trait loci (QTL’s) in an appro-
priate animal model system, and then
search for similar associations in humans
(3).

A problem heretofore in studying the
genetics of quantitative traits in humans is
the low power of linkage analysis to detect
loci contributing to the trait. One common-
ly employed approach is the robust sib pair
design first described by Haseman and El-
ston (4). In this method, the difference in
trait values (such as height, weight, or blood
pressure) for a pair of sibs is squared (D?)
and examined as a function of the number of
alleles that the pair have derived from a
common parent [identical by descent (ibd)]
at a tested marker locus. When a locus con-
tributing to the variation of the quantitative
trait lies near the tested marker locus (in
other words, there is linkage between the
two loci), there will be a negative regression
of D? on the number of alleles shared ibd; for
sibs sharing two alleles ibd, D? will be small,
while for sibs sharing no alleles ibd, D? will
be large. This approach has also been ex-
tended to pedigree relationships other than
sibs (5). However, Blackwelder and Elston
(6) showed that the proportion of the total
variance (heritability) in a trait attributable
to a contributing locus would need to be
large (~50%) to detect linkage in a reason-
ably-sized sample by sib pair analysis when
the sibs are sampled at random (irrespective
of their trait values). For example, 2953
pairs would be needed to detect linkage with
90% power for a locus that is responsible for
30% of the variation (30% heritability) (6).
Extensions of the sib pair approach to allow
for multipoint analysis with flanking marker
loci have increased the power of this meth-
od (7). However, even with multipoint
analysis, thousands of sib pairs are required
to detect linkage to a locus that has a heri-
tability of 25% (8).

The fact that power to detect linkage can
be increased by using selected versus random
samples has recently been noted (9-10).
This approach is also based on sib pair anal-
ysis, but in this case one of the sibs is ascer-
tained to have an extreme value (say, within
the top 5 or 10% of the distribution); the
second sib is selected at random. Again,
regression is the statistical method em-
ployed. In this case, however, the value of



the second (unselected) sib is regressed on
the number of alleles shared ibd with the
selected sib. In the presence of linkage, the
mean value of the unselected sib regresses
toward the population mean with decreasing
ibd with the proband. Carey and Williamson
(9) showed that sample sizes could be reduced
dramatically to achieve the same power by
ascertaining sib pairs through a proband as
opposed to random pairs. This approach was
further generalized to the multipoint setting
by Cardon and Fulker (11), and used to sug-
gest a QTL for reading disability (12).

In all these methods, the outcome (de-
pendent variable) is the quantitative trait
value for an unselected sib or the squared
difference for a sib pair (D?), while the pre-
dictor (independent) variable is the number
of alleles shared ibd at the marker locus or
loci. However, it is more natural to view
number of alleles ibd at the marker locus as
the outcome (dependent variable) and the
sib trait values as independent (predictor)
variables. This is particularly important be-
cause sib pairs can be chosen for analysis
based on their trait values but not based on
their marker information. Thus, to maximize
the power to detect linkage with a QTL, it is
key to ascertain sib pairs in an optimal way
through their trait values and only use those
pairs likely to be most informative.

Estimating Expected
IBD by Decile

We consider a trait composed of a single
gene effect with residual variation that has
both genetic (or shared environmental)
and unique (unshared environmental)
components.

Let x,; and x, be the observed trait
values for the first and second sibs, respec-
tively, in the ith sib pair. We assume the
general model (4)

xp =Mt gy toe

X = Wt g toey,
where p is the overall mean and g; and e
are the genetic and environmental effects,
respectively. We assume that one locus, A,
determines g; and that two alleles, A, and
A,, are involved in this locus with gene
(population) frequencies p and ¢, respec-
tively. Then, following Falconer (13), let

gi = afor an AjA, individual
d for an A A, individual

—a for an A,A,; individual

In general, it is not necessary to assume a
normal distribution for e however, for
simplicity, our numerical computation is
done for the normal distribution case.
Without loss of generality, we assume that
e;; and e, have variance o2 of 1 and
correlation p. The residual correlation re-

flects the possibility of other genetic or

shared environmental determinants. The

terms o2 and o’ are the additive and
a d

dominant components of the genetic vari-

ance Gé of locus A, namely,

oy = 2pqla — d(p — @) and 0§ = (2pqd)’

The heritability due to this locus is H =
olf(a? + 1).

First, we break the trait value into 10
consecutive intervals (deciles) I, .. ., I,y
within each of which the probability of a
random individual falling is 0.1. The fol-
lowing methods apply to any number of
divisions, however. Ignoring order, there
are six combinations of genotypes for sib
pairs. In Table 1 we give the conditional
probability for each combination given ibd
(columns 2 to 4) and also define the con-
ditional probability of one sib’s phenotype
falling in the hth decile and the other’s in
the Ith decile (columns 5 to 6), assuming no
residual correlation (p = 0).

Here, f;, is the probability that an indi-
vidual’s phenotype falls in the hth decile
given he(she) is genotype j, where j corre-
sponds to the number of A, alleles in the
genotype (j = 2 for A|A,, 1 for A;A, and 0
for A,A,). Denote by O(h,l) the outcome
event that one sib’s phenotype falls in the
hth decile and the other sib’s in the lth
decile. Let G, represent the pair of genotypes
as enumerated in Table 2, where k = 1, . . .,
6. Then let D, = P(w = i and O(h,l)), or

6

D; = P(m =) >, P(G, | m = i) PO | G
k=1
(1)

and )

where P(G, | w = i) is given in columns 2
through 4 of Table 1. P(O(h,1)|G,) is given
in columns 5 and 6, and P(m = 2) = P(w =

0) = 1/4 and P(w = 1) = 1/2. Then
P(w =il O(h)) = D,/D (2)

The above conditional probability of  giv-
en O(hl) can also be calculated for the
situation of a positive residual correlation
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between sibs (p > 0) in a similar fashion.
For this case, we need to employ a bivariate
normal distribution as follows. Let ¢&(x; )
represent a normal density function with
mean W and variance 1; let &(x, y; g, oy
p) correspond to a bivariate normal density
function for random variables X and Y,
where W, is the mean of X and ., is the
mean of Y, each variable has variance 1,
and p is the correlation between X and Y.
Then

up ty

P(O(h) l) l Gk) = ff (b(x) 5 M1y Moy p) dXdy

u) ty

(3)
where
u; = F"Y(h/10 and u, = F~! ((h + 1)/10)
demark the hth decile,
t, =F '/10andt, = F~1((l + 1)/10)
demark the Ith decile,

W = a, d, or —a as the first sib’s genotype is
AlAl? AIAZ) or AZAZ

W, is defined similarly according to the
second sib’s genotype, and

X

F(x) = J [p’d (w; a) + 2pqd (w; d)
h+ﬁwﬂw

is the cumulative distribution function for
the population distribution of the trait. The
conditional probability P(w = i|O(h,l)) can
then be calculated using formula 2, but
replacing formula 3 for P(O(h,})|G,) in for-
mula 1.

Power Calculations

By means of the above formulas, we can
calculate the expected proportion of alleles
shared ibd for each combination of deciles
for a sib pair, its deviation from the null
value of 1/2 and hence the power to detect
linkage. Assume a sample of n fully infor-

Table 1. Six sib-pair genotype combinations with associated probabilities of trait outcomes when p = 0.

Probability of genotypes given

Probability of trait outcomes

Genotypes given
=2 m=1 =0 h=1 h#1
AALAA, > ps 4 4 2fopfz
AALAA, 0 20%g 4p3q fonfin fonfas + fafin
AALAA, 0 0 20°g? f2h£0h fonfor + farfon
AALAA, 20q pPq 4p3g? fh 2f1nf1
AALAA, 0 2pg? 4pg® fo;ném fonf1r + fofin
AR AA, q° q® q’ foh 2fonTor
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mative sib pairs (genotypes of both parents
are known, marker heterozygosity of 1). For
the ith sib pair let X;; be a random variable
representing the number of alleles (1 or 0)
shared ibd from the father; define X, sim-

1lar1y for the mother. Let Z, = P(X|;
,=1,Z, =P, =1, X =0) + P(Xh

=0,X2i=1),ZO—P( ,—OX = 0),

and 7 = Z, + 14Z,. Define X = ZL 2

(Xy; + X,,). Then X is approximately a nor-
mal random variable with mean T and vari-
ance (1(1 — 271) + Z,)/(2n).

The null hypothesis is H_: T = 1/2. We
are generally interested in a one-sided alter-
native (either T > 1/2 or 7 < 1/2), so we
employ the power for a one-sided test of a
normal random variable, namely

cI)(za/z+|7—1/z'l Nz
il =20 + 2, )

where @ is the cumulative standard normal
distribution function, and Z_ is the normal
deviate corresponding to an « type 1 error
probability (in other words, the significance
level).

Hence, the required number of sib pairs
to obtain a power of 1 — B (the probability
of rejecting the null hypothesis) is

(zl el =21 + 2, — za/2>Z

T—1/2

(4)

We also compare the required sample sizes
for our selected sib-pair approach to that of
a random sib pair design analyzed by Hase-
man-Elston statistics. In that approach the
linear regression model E(Dler By +

B, is applied, where Dz is the squared
dlfference of trait values for the jth sib pair,
B, =0’ + 20 and B, = —(Zcr + 2n, (n,
- ny) Ud)/(4”onz + ngn, + n nz) Here, n,

BRI T R TR T

is the number of sib pairs sharing i genes ibd
(i =0, 1 or 2). From reference (4), the
estimate {3 for B, is

(ny + nl/Z)ED%, + (ng — nz)z'/zD{, —(n; + 111/2)2 D,l,,
j=1 i=1 =1

ngny + Vanng + Vann,

B+

(5)

where the D? correspond to the squared sib-

pair differences for those pairs sharing i genes

ibd. For a large number of sib pairs, we

expect that n, = ny = n/4 and n, = n/2.

Under this assumption, formula (5) simpli-
fies to
. 4

bi=i E - Dy), (6)

and is approxnnately normally distributed
with mean — 20 and variance (4€ + 80(1
— p)), where p is the residual correlation
between sibs, and g 1s the variance of DO,
which is 20 + 8c20? — 402 + 4pqlp*(a —
d)* + ¢¥a Yat+ 8a4pq] Under the null
hypothesis (0' =0), Bl, is distributed with
mean 0 and variance 1602(1 — p)/n. The
rejection reglon for the null hypothesis is
B,<4Z.0X(1 — p)/Vn, and the power is
given by

(22“062(1 —-p) + (ré n)
JE+ 2081 — p)?

Thus, to obtain a power of 1 — B, the
required number of sib pairs is

(zl;ﬁm——pfz — 22,01 — p>)2

o

(7)
In Table 2 we have provided the sample sizes
necessary to detect linkage at a significance
level a of 0.05 with 80% power (= 1 — B)
for an additive genetic model with a = 1, d
= 0, and o = 1. Table 2A corresponds to a
gene frequency p of 0.20, while for Table 2B,

2 L3 § e

p = 0.40. In each table, the upper triangle
corresponds to a residual correlation p = 0,
and the bottom triangle to p = 0.4. For the
major locus in Table 2A, the heritability H
due to this locus is 0.242; in Table 2B, it is
0.480. Each column and row corresponds to
a decile of the trait distribution (1 = lowest
10th percentile, 10 = highest 10th percen-
tile). The numbers in Table 2A also apply
for the same model with an allele frequency
p = 0.80, but with the deciles reversed (for
example, 1 replaces 10). The same applies to
Table 2B, but for an allele frequency p =
0.60.

The most striking observation is that
the power to detect linkage is concentrat-
ed in the pairs at the three corners of
the triangle—those concordant for high
values, low values, or the extremely dis-
cordant pairs. Pairs involving individuals
with intermediate values (between 30th to
70th percentile) provide little information
for linkage analysis. It is also clear from
the tables that the uniformly best strategy
in the additive case (in which a heterozy-
gote for genes underlying a continuous
trait has a phenotype halfway between the
homozygotes) is to take the most discor-
dant pairs (in other words, those with one
sib in decile 1 and the other in decile 10).
To expand the sample size, an alternative
would be to take the top and bottom
20th percentiles, or the top 10% and bot-
tom 30%, although this leads to somewhat
reduced power. The latter strategy would
be most useful when a disease is defined by
extreme values of a continuous trait (for
example hypertension and the trait of
blood pressure). In this example, hyper-
tension patients (in the top 10th percen-
tile of blood pressure) could be sampled,
and those with a sib in the bottom 30th
percentile of blood pressure identified).
Pairs concordant for high trait values will
be useful when the allele frequency (p)

Table 2. Number of sib pairs required to detect linkage by decile for the additive model. Above the diagonal, p = O; below the diagonal, p = 0.4. *, greater than
999; **, greater than 9999; ***, greater than 99999. (A) is for p = 0.2, and (B) is for p = 0.4.

A . B
decile 1 2 3 4 5 6 7 9 10 | decile decile 1 2 3 5 6 7 8 9 10 | decile
478 693 * * ok * 277 62 1 126 228 464 *oKx * 543 185 17T 28 1
* * * KRR Ex * 458 102 2 407 787 ¥Rk XX * 465 179 60 2
1 632 * ooowk Rk kx * 780 168 3 1 176 * KRR kX * * 405 118 3
5 * k% * * * wk kk k% Kk 7 5 617 ** * * * * * * * 7
6 g78  wx Wk * * * * * * 8 6 181 * kk * * * * 889 550 8
7 283 * *o kR * * * 635 259 9 7 79 361 *owRE * * * 397 185 9
8 115 346 * *RR * * * 73 10 8 40 122 381 *oKk * * 643 1 10
9 49 110 224 523 xR * * 539 9 21 49 109 286 xR * 614 323
10 19 31 48 77 136 302 *ORRE 647 121 10 10 18 31 54 108 285 * * 383 107
1586 SCIENCE ¢ VOL. 268 ¢ 16 JUNE 1995

A T



for high values is low. However, when the
allele frequency for high values is large,
such pairs will be far less useful (for ex-
ample, when p = 0.8, 661 pairs in the top
10% are necessary, compared to only 84
pairs in the top and bottom 10%). A
similar argument applies for low trait
values.

It should also be noted from these tables
that when there is a positive residual corre-
lation (for example, when several genes
interact to generate the heritability) the
power of concordant pairs to detect the
genes decreases, whereas the power of dis-
cordant pairs increases, because, when there
is a positive residual correlation, discordant
pairs have an increased probability of being
genotypically discordant at the locus of in-
terest. When this residual correlation is
large the increase in power can be sizeable,
resulting in a reduction of necessary sample
size of threefold.

For comparative purposes, if one analyzed
random sib pairs with the Haseman-Elston
approach, with the model in Table 2A,
1,082 sib pairs would be required at p = 0, or
780 sib pairs at p = 0.40; using only the
most discordant pairs (top 10% and bottom
10%), we would require, for p = 0, only 61
pairs (one eighteenth as many), or for p =
0.40, only 19 pairs (one forty-first as many).

Table 3-gives similar results for a domi-
nant model (a = d = 1, 0‘3 = 1) with the
allele frequency p equal to 0.2 (Table 3A)
and 0.6 (Table 3B). Again, o = 0.05 and 1
— B = 0.80; the upper triangle corresponds
to p = 0 and the lower triangle to p = 0.4.
As before, symmetry indicates that these
tables also apply to the recessive case for
allele frequencies ¢ = 0.8 and 0.4, where
the deciles are inverted in order. The heri-
tabilities due to the loci of interest in these
two tables are 0.480 and 0.350, respectively.

The pattern in Table 3 is similar to that
in Table 2 in that again the power to detect

linkage is found in sib pairs lying in the
three corners of the triangle. However,
which corner provides the greatest power
now depends on the allele frequency. For a
low frequency dominant allele (p = 0.2),
the discordant pairs are most useful, includ-
ing the top and bottom 20th percentile. In
this case, sibs concordant for high values are
also useful; those concordant for low values
are less so. When there is a significant
residual correlation (p = 0.4), the power of
discordant pairs is increased; the power of
pairs concordant for high values is now
reduced slightly as it is for pairs concordant
for low values.

For a dominant allele, the pattern be-
gins to change as p increases. As long as
the allele frequency is not too large (p <
0.6), discordant pairs are still powerful.
Again, residual correlation increases the
power for this group. When the residual
correlation is large (p = 0.4), the discor-
dant pairs are most powerful, even at high
allele frequencies (p = 0.0). Pairs concor-
dant for low values are informative while
those concordant for high values are not.
In this case, the power for these pairs is
slightly reduced. Thus the discordant pairs
are always informative, whereas concor-
dant pairs are unpredictable. These con-
clusions also apply to the recessive case.
We also note that in this case, as in the
additive case, the use of discordant sib
pairs is vastly more efficient than using
random pairs. For low allele frequencies,
the sample size ratio is about 12 to 1,
whereas for high allele frequency it ranges
from 7 to 1 to 40 to 1 depending on the
degree of residual correlation.

Comparison of Double Proband
with Single Proband Designs

Carey and Williamson (9) suggested that the
power to detect linkage with a QTL could be

=y
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increased by sampling sib pairs through pro-
bands with extreme values. In their design,
the second sib is selected at random, irre-
spective of his/her trait value. The second
sib’s trait value is regressed on ibd with the
proband sib at a marker locus. Under linkage,
those second sibs sharing two alleles ibd with
the proband should show the highest mean
trait value, whereas those with no alleles ibd
should regress close to the population mean,
depending on the amount of residual correla-
tion. We refer to this method as the single
proband sib pair (SPSP) approach.

By contrast, we focus on sib pairs in
which selection has occurred on both sibs’
trait values. Hence, we refer to this method
as double proband sib pair (DPSP) analysis.
The results in Tables 2 and 3 suggest that
SPSP analysis is still inefficient due to the
inclusion of many sibs with intermediate
values. When the second sib falls in the
20th to 70th percentiles, there is generally
little deviation from the null expectation of
ibd with the proband. This finding would
suggest that sampling only the corners of
the table, in particular the discordant pairs,
would lead to far greater efficiency.

To compare power, we use results pre-
sented in (9) for 240 sib pairs ascertained
through single probands in the top decile,
with the other sib at random. Their results
were generated by simulations. For the
DPSP approach, we consider three differ-
ent strategies, two for discordant pairs and
one for concordant pairs: (i) T1B1, one sib
in top decile, the other sib in bottom
decile; (ii) T1B3, one sib in top decile, the
other sib in bottom 30%; (iii) T1T1, both
sibs in top decile. We also assume 240 sib
pairs, and calculate power as described
above. Carey and Williamson considered
additive, dominant and recessive alleles
for high trait values with p = 0.2, 0.4, 0.6
and 0.8, with the residual correlation p =
0.2. We evaluated the same cases. By fix-

Table 3. Number of sib pairs required to detect linkage by decile for dominant model. Above the diagonal, p = O; below the diagonal, p = 0.4. *, greater than
999; **, greater than 9999; ***, greater than 99999. (A) p = 0.2, and (B) p = 0.6.

A B
decile] 1 2 3 4 5 6 7 8 9 10]decile decile| 1 2 4 5 6 7 8 9 10]decile
260 277 310 391 665 *  * 103 29 15| 1 2 719 386 113 68 52 45 41 38| 1
204 330 417 711 * %X 114 33 18| 2 366 ** X % 737 597 531 495 474 | 2
1| 270 371 470 806  *  * 138 42 23| 3 1| 32 L L
2 [310 295 508 % * % 197 63 37| 4 2 |227 214 Y
3 | 446 334 335 ¥k %417 148 93| 5 3 |89 x  x x ok ox % kx| g
4 * 474 397 398 A R B 4106 Rk L
5 | % % 678 508 485 ¥ %966 707 | 7 50 54 x ok x L R N I
6 |246 * * X 675 520 314 162 125| 8 6 | 37 572 Rk ko x * ok x| g
7| 49 155 560  *  * 681 345 89 71| 9 7] 30 258 kx ok &k x %9
8 | 21 36 64 151 817 * 343 156 58| 10 8 | 25 141 x ke ko x o x *| 10
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ing 02 =" 1 and allowing a to vary, we
obtain the different heritabilities H due to
the locus considered.

The results of this comparison for the
additive case are given in Fig. 1. From these
figures, the dramatic increase in power
when using a DPSP strategy is apparent. It
is clear that the discordant pairs always
have highest power, especially for the T1B1
group. The pairs concordant for high values
(T1T1) also perform well except when the
allele frequency for high values is large
(0.8). In any event, it is clear that if the
T1BI1 strategy is used at low heritability, the
power is three to four times greater than for
the SPSP strategy. Even for the T1B3 strat-
egy the power is double that of SPSP. The
situation for a dominant allele is similar.
The power is dramatically higher for a
T1B1 strategy across all gene frequencies,
but is especially so, when the gene frequen-
cy is large (=0.6). For gene frequencies less
than 0.6, T1B3 also performs well, but
when the allele frequency is higher (0.8),
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power is reduced, although still consider-
ably greater than for the SPSP strategy. For
a recessive allele, the findings are again the
same, except that when the allele frequency
is low (0.2), there is little difference be-
tween the T1B1 and SPSP strategies. In this
case, the TIT1 strategy is best, because
these pairs are likely to share two alleles ibd.

In Table 4 we give the number of sib
pairs required by a TIB1 or T1B3 strategy
to achieve the same power as the SPSP
strategy, as a function of heritability (H)
due to the locus of interest and the allele
frequency (p). These numbers were calcu-
lated with formula (4), in which T and Z,
are determined for a sib pair falling in the
deciles of interest, and 1-B is the power of
the SPSP strategy. It is apparent from this
table that the reduction in necessary sample
size is usually dramatic. For the T1B1 strat-
egy, there is generally a 6- to 40-fold reduc-
tion in necessary sample size. The only ex-
ception is for a rare recessive allele, where
the sample sizes are comparable.
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0.0
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0.5 0.0 0.1 0.2 0.3 0.4 0.5

Heritability

Fig. 1. Comparison of power for 240 single proband sib pairs (bullets) versus double proband sib pairs
for three double selection strategies in an additive model. Symbols for all panels are as shown for P = 0.2.

Table 4. Number of DPSPs giving the same power as 240 SPSPs.

Additive model, Dominant model, Recessive model,
H where p = where p = where p =
0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8
Top 10% and bottom 10%
0.1 33 55 49 12 39 14 15 14 152 55 38 20
0.2 48 28 25 17 36 19 12 7 186 80 44 18
0.3 38 27 21 15 33 19 10 11 233 75 38 17
0.4 32 27 18 14 34 20 10 12 265 57 37 19

Top 10% and bottom 30%

0.1 63 121 121 34 78 32 47 86 214 89 75 50
0.2 85 59 62 51 64 46 42 54 259 113 79 44
0.3 62 55 51 46 52 43 39 126 328 95 58 40
0.4 48 55 44 43 45 41 39 141 375 65 49 40
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Sampling Considerations

We have used formula (4) to determine
sample sizes required to detect linkage with
the different DPSP strategies for a range of
gene frequencies, heritabilities, and residual
correlations (14). We find that sample sizes
are generally within experimental limits pro-
vided the heritability is greater than 0.1.
However, an important question remains as
to how many sib pairs need to be screened to
obtain the desired doubly selected samples.
If we assume that only one tail of the distri-
bution is of primary clinical interest, then it
may be possible to access a large number of
individuals in the extreme 10th percentile
of that tail from clinical or other sources.
Then, the question is how many sibs of these
individuals need to be screened to obtain
the requisite sample size. We have also cal-
culated these numbers (14). Generally, we
find that when the heritability due to the
locus of interest is high (=0.5) the number
of sibs requiring screening is in the low
hundreds; for a low heritability of 0.1, the
number is in the low to middle thousands.

The feasibility of screening large num-
bers of individuals will depend on whether
information on the trait is readily available
(such as for weight or height), or whether
expensive or invasive testing is required. If
the limiting factor is the expense of geno-
typing, but the sibling material is easily
obtained, a T1B1 strategy is appropriate; on
the other hand, if the sibling material is the
limiting resource and the genotyping is in-
expensive, the T1B3 andfor T1T1 strategy
is preferred. Perhaps a reasonable trade-off
is to collect all the T1B3 and TIT1 sib-
ships, first type the T1B1 pairs and then
confirm the initial positive findings with
the remaining pairs.

Conclusions

Our data clearly demonstrate that the only
design that is uniformly powerful in all ge-
netic situations is the extreme discordant sib
pairs. This is because these pairs are unlikely
to share alleles ibd for any genetic model.
Sib pairs concordant for extreme values can
also be useful, but which tail provides the
power varies with the conditions. As a gen-
eral rule, it is the tail corresponding to the
lower allele frequency that is useful; howev-
er, the degree to which this is the case
depends on dominance. For an additive lo-
cus, both tails are useful when the allele
frequencies are equal, but when one allele
drops below 0.3 in frequency, only that tail
should be sampled. For a locus dominant for
high values, sampling the upper tail is useful
up to an allele frequency of about 0.3; oth-
erwise, the lower tail should be sampled.
Similarly, for a locus that is recessive for
high values, sampling the upper tail is useful



up to an allele frequency of around 0.7.

When studying a trait where only one
tail is of clinical significance (such as blood
pressure or weight), it is tempting to sample
sib pairs concordant for that tail. This will
be particularly so when the distribution
shows skewness toward the end with clini-
cal significance. Skewness can be an indi-
cator of a major gene with an allele of low
frequency. If such is the case, sampling sib
pairs concordant for that tail will be a prac-
tical strategy. However, if the skewness is
due to other reasons (such as nongenetic
reasons) this strategy could fail. Further-
more, this strategy would not be powerful to
identify other contributing loci that do not
produce skewness.

Historically, investigators have usually
searched for rare alleles in the population.
For many traits, there will be multiple genes
underlying variation. These genes may well
have high allele frequencies and the strate-
gies used for rare genes cannot be applied.
In general, the only design with power to
detect all these genes, irrespective of allele
frequencies and degree of dominance, is the
discordant pairs.

A question that often arises in sib pair
analysis is what to do with additional sibs
beyond the pair. Given the severity of the
selection criterion, we would not expect
many families to have multiple siblings
meeting the criteria. However, we did ex-
amine the case of sib trios, where one sib
was in the top 10% and the other two sibs
in the bottom 10% or bottom 30%, respec-
tively. We examined identity by descent for
the two discordant pairs, which are statisti-
cally independent. We found (14) that the
power was essentially the same as for two
unrelated sib pairs; in other words, the ex-
pected deviation of number of alleles ibd
from the null hypothesis for each of the two
pairs was the same as for two single pair
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sibships. Thus, any families with multiple
sibs of a proband meeting criteria should be
included for analysis; all qualifying pairs
that include the proband can be included as
independent pairs.

Another question is whether this ap-
proach can be extended to qualitative traits
or disease states in which an individual is
either affected or not affected. The key is to
define individuals who lie at the opposite
end of the putative distribution underlying
the disease. It is not sufficient to simply use
affected/unaffected pairs, because there will
be a range of values classified as unaffected.
However, if it is possible to define a con-
tinuous trait associated with disease, then it
may be possible to define individuals at the
opposite end of this continuum.

The power to detect linkage with dis-
cordant sib pairs increases in the presence
of a residual sib correlation, especially at
low heritability for the tested locus,
whereas concordant pairs show a decrease
in power. (In simpler terms, if siblings are
discordant in the presence of other genes
that cause them to be similar, then they
are more likely to be discordant at any
contributing locus.) The two major deter-
minants of power to detect linkage for a
locus contributing to a quantitative trait
are the heritability due to that locus and
the residual correlation. Because the pow-
er to detect a weak locus increases with
residual correlation, using discordant pairs
should make it possible to detect such loci
provided the total heritability (due to the
tested locus and the residual correlation)
is high enough. Thus, it appears that total
heritability may be a more important fac-
tor than the number of loci contributing
to that total. Our calculations suggest
that, when the total heritability is in the
range of 30%, there will be sufficient pow-
er to detect linkage if the genetic variation
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is primarily attributable to three or fewer
loci; at 50% total heritability, five or fewer
loci would be detectable.

Finally, we note that the extreme discor-
dant sib pairs represent a powerful design
for association studies of candidate genes
(14). Thus, the same sample can be used for
linkage and association studies.

The recent interest in identifying genes
for quantitative traits necessitates the de-
velopment of powerful methods for tackling
this task. We have shown that judicious
sample selection, in particular the use of
extreme discordant sib pairs, should facili-
tate this endeavor. This approach may en-
able investigators to identify genes involved
in complex traits such as hypertension, obe-
sity, or behavior that would not have been
possible with other study designs.
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