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Extreme Discordant Sib Pairs 
for Mapping Quantitative Trait 

Loci in Humans 
Neil Risch* and Heping Zhang 

Analysis of differences between siblings (sib pair analysis) is a standard method of genetic 
linkage analysis for mapping quantitative trait loci, such as those contributing to hyper
tension and obesity, in humans. In traditional designs, pairs are selected at random or with 
one sib having an extreme trait value. The majority of such pairs provide little power to 
detect linkage; only pairs that are concordant for high values, low values, or extremely 
discordant pairs (for example, one in the top 10 percent and the other in the bottom 10 
percent of the distribution) provide substantial power. Focus on discordant pairs can 
reduce the amount of genotyping necessary over conventional designs by 10- to 40 -fold. 

The power of modern molecular methods 
for identifying Mendelian disease genes, 
such as those for cystic fibrosis, Huntington 
disease, and neurofibromatosis, has been 
amply demonstrated. The feasibility of 
these methods for identification of suscep-
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tibility genes for non-Mendelian disorders 
(such as diabetes, multiple sclerosis, and 
hypertension) remains to be seen. A major 
problem in searching for such loci is the 
lack of the simple one-to-one correspon
dence between gene effect (genotype) and 
disease outcome (phenotype) that is typical 
for the Mendelian case. Multiple loci may 
contribute to susceptibility, with complicat
ed interaction effects among loci. For ex
ample, in the non-obese diabetic (NOD) 
mouse model of human insulin-dependent 
diabetes (IDDM), evidence for at least 10 
susceptibility loci was obtained (1), and it 

appears from human studies that IDDM 
may be equally complex (2). 

An important class of traits for study in 
human genetics are quantitative ones, in 
which the phenotype is measured on a con
tinuous scale. These may either directly 
underlie disease classification (such as 
blood pressure and the associated disease, 
hypertension; or weight and obesity) or may 
be considered as a risk factor for a disease 
state (such as cholesterol and ischemic 
heart disease). One approach is to identify 
quantitative trait loci (QTL's) in an appro
priate animal model system, and then 
search for similar associations in humans 
(3). 

A problem heretofore in studying the 
genetics of quantitative traits in humans is 
the low power of linkage analysis to detect 
loci contributing to the trait. One common
ly employed approach is the robust sib pair 
design first described by Haseman and El-
ston (4). In this method, the difference in 
trait values (such as height, weight, or blood 
pressure) for a pair of sibs is squared (D2) 
and examined as a function of the number of 
alleles that the pair have derived from a 
common parent [identical by descent (ibd)] 
at a tested marker locus. When a locus con
tributing to the variation of the quantitative 
trait lies near the tested marker locus (in 
other words, there is linkage between the 
two loci), there will be a negative regression 
of D2 on the number of alleles shared ibd; for 
sibs sharing two alleles ibd, D2 will be small, 
while for sibs sharing no alleles ibd, D2 will 
be large. This approach has also been ex
tended to pedigree relationships other than 
sibs (5). However, Blackwelder and Elston 
(6) showed that the proportion of the total 
variance (heritability) in a trait attributable 
to a contributing locus would need to be 
large (—50%) to detect linkage in a reason
ably-sized sample by sib pair analysis when 
the sibs are sampled at random (irrespective 
of their trait values). For example, 2953 
pairs would be needed to detect linkage with 
90% power for a locus that is responsible for 
30% of the variation (30% heritability) (6). 
Extensions of the sib pair approach to allow 
for multipoint analysis with flanking marker 
loci have increased the power of this meth
od (7). However, even with multipoint 
analysis, thousands of sib pairs are required 
to detect linkage to a locus that has a heri
tability of 25% (8). 

The fact that power to detect linkage can 
be increased by using selected versus random 
samples has recently been noted (9-10). 
This approach is also based on sib pair anal
ysis, but in this case one of the sibs is ascer
tained to have an extreme value (say, within 
the top 5 or 10% of the distribution); the 
second sib is selected at random. Again, 
regression is the statistical method em
ployed. In this case, however, the value of 
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the second (unselected) sib is regressed on 
the niunber of alleles shared ibd with the 
selected sib. In  the presence of linkage, the 
mean value of the unselected sib represses 

flects the  possibility of o ther  genetic or 
shared environmental determinants.  T h e  
terms oi and are the  additive and 
d o ~ n i n a n t  components of the  genetic vari- 
ance o: of locus A, namely, 

a: = 2pq[a - d(p - q)]' and a: = (2pqd)' 

between sibs ( p  > 0 )  in a similar fashion. 
For this case, we need to  employ a bivariate 
normal distribution as follows. Let +(x; k )  
represent a normal density fiunction with 
mean p. and variance 1; let +(x, y ;  k l ,  k2 ,  
p) correspond to a bivariate normal density 
function for random variables X and Y, 
where pI  is the mean of X and p2 is the  
mean of Y, each variable has variance 1,  
and p is the correlation between X and Y. 
T h e n  

toward the  population mean with decreasing 
ibd with the proband. Carey and Williamson 
19) showed that sample sizes could be reduced 
dramatically to achieve the same power by 
ascertaining sib pairs through a proband as 
opposed to rand0111 pairs. This approach was 
further generalized to the nlultipoint setting 
by Cardon and Fulker (1 I ) ,  and used to sug- 
gest a QTL for reading disability (1  2). 

In  all these methods, the outcome (de- 
pendent variable) is the quantitative trait 

T h e  heritability due to  this locus is H = 
</ (o i  + 1) .  

First, we break the  trait \.alue into 10 
consecutive intervals (deciles) I , ,  . . ., I IG 
within each of which the  probability of a 
random indi\.idual falling is 0.1. T h e  fol- 
lowing methods apply to any number of 
divisions, however. Ignoring order, there 

value for an  unselected sib or the squared 
difference for a sib pair (D'), while the pre- 
dictor (independent) variable is the nulnber 
of alleles shared ibd at the marker locus or 

are six combinations of genotypes for sib 
nairs. In  Table 1 we give the  conditional "1 '1 

( 3  
where 

probability for each combination given ibd 
(columns 2 to 4 )  and also define the con- 

loci. However, it is more natural to  view 
number of alleles ibd at the marker locus as 
the outcome (dependent variable) and the 
sib trait values as independent (predictor) 
variables. This is particularly important be- 
cause sib pairs can be chosen for analysis 
based o n  their trait values but not based o n  
their marker information. Thus, to maximize 
the power to detect linkage with a QTL,  it is 
key to ascertain sib pairs in an  optimal way 
through their trait \ d u e s  and only use those 
pairs likely to  be most informative. 

ditional probability of one sib's phenotype 
falling in the h t h  decile and the other's in 
the  Ith decile (columns 5 to 6 ) ,  assiuning 110 

residual correlation ( p  = 0) .  
Here, hl, is the probability that an  indi- 

\7idual1s phenotype falls in the h t h  decile 

u l  = F-'(h/lO and u2 = F- '  ((h + 1)/10) 

delnark the  hth decile, 

t, = F '(1/10 and t2 = F - ((1 + 1)/10) 

demark the  lth decile, 

given he(she) is genotype j, where j corre- 
sponds to the niunber of A, alleles in the 
genotype ( j  = 2 for A,Al,  1 for A,A, and 0 
for A,A,). Denote by O(h,l) the outcome 
event that one sib's phenotype falls in the 
h t h  decile and the other sib's in the lth 
decile. Let GI, represent the pair of genotypes 
as enumerated in  Table 2, where k = 1, . . . , 
6. The11 let D, = P(T = i and O(h,l)) ,  or 

p., = a ,  d, or -a as the first sib's genotype is 

AIAl,  A I A ? ,  or A z A z  

p.' is defined similarly according to the  
second sib's genotype, anid 

Estimating Expected 
IBD by Decile 

A 

D, = P(T = i ) z  P(Gl, 1 T = i) P(O(h,l) 1 G I )  
b= l 

and 
( 1 )  

D =  ED,  
,=i? 

W e  consider a trait cornposed of a sillgle 
gene effect with residual variation that has 
bo th  genetic (or shared environmental) 
and unique (unshared environmental) 
components.  

Let xlL and xL, be the observed trait 
values for the first and second sibs, respec- 
tively, in  the  ith sib pair. W e  assume the 
general model (4) 

is the cumulati\.e distribution f ~ ~ n c t i o n  for 
the population distribution of the  trait. T h e  
conditional probability P(T = iiO(h,l)) can 
then be calculated using formula 2, but 
replacing formula 3 for P(O(h,l)IGL) in for- 
mula 1. 

where P (GI' T = i) is given in columns 2 
through 4 of Table 1. P(O(h,l)lGl,) is given 
in  columns 5 and 6, and P(T = 2) = P ( r  = 

0 )  = 114 and P(T = 1 )  = 112. T h e n  

Power Calculations 

x2, = p. + p2, + e2,, 

where p. is the  o\~erall  mean and g,, and e,, 
are the genetic and environmental effects, 
respecti\~ely. W e  assume that one locus, A, 
determines g,, and that two alleles, A l  and 
A,, are in\.olved in  this locus with gene 
(population) frequencies p and q, respec- 
tively. Then ,  following Falconer (13),  let 

By means of the above formulas, we can 
calculate the expected proportion of alleles 
shared ibd for each combination of deciles 
for a sib pair, its deviation from the null 
value of 112 and hence the power to detect 
linkage. Assume a sample of n fully infor- 

T h e  above conditional probability of r giv- 
e n  O(h,l)  can also be calculated for the 
situation of a positive residual correlation 

Table 1. Six sib-pair genotype comb~nations wlth assocated probabilities of trait outcomes when p = 0. 
g,, = a for a n  AIA, indi\.idual 

Probabty of genotypes gven Probabllty of trat outcomes 
glven 

Genotypes 
= d for a n  AIAz individual 

= - n  for a n  A2A2 lndiv~dual  

In  general, it is not necessary to assume a 
normal distribution for ej,;  however, for 
simplicity, our nulnerical computation is 
done for t h e  normal distribution case. 
Without  loss of generality, we assume that  
e I i  and ezi  have variance a: of 1 and  
correlation p. T h e  residual correlation re- 

Ai Ai 'Ai A1 P" p3 p4 f $7 2fzt, fz: 
4 A, A A 2  0 2 ~ 2 q  4 ~ 3 q  f2h 17 f2t l f i I  + f2jf7h 

Ai Ai " 9 2  O O 2pQ2 f2t1 fot, fz17fo: + fzifoh 
AiA2.AiA2 2Pq P4 4 ~ 2 q 2  fl?h 2fi h f l l  

A,,4, 442A2 0 2Pq2 4pq3 fat, t, fohfll - f 0 1 f 7 t 7  

A2A2 .A2A2 q" q3 q4  fo!, 2fot7 fo: 
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mative sib pairs (genotypes of both parents 
are known, marker heterozygosity of 1) .  For 
the ith sib pair let XI ,  be a random variable 
representing the number of alleles (1  or 0 )  
shared ibd from the father; define X2, sim- 
ilarly for the mother. Let Z2 = P(XIL = 1, 
X2, = I ) ,  Zl = P(X1, = 1, X,, = 0 )  + P(Xli  
= 0 , X 2 ,  = I ) ,  2, = P(X,, = 0, xzi = O), 

- 
(XI,  + X z i )  Then  X is approximately a nor- 
mal ra~ldom variable with mean 7 and vari- 
ance ( ~ ( 1  - 2 ~ )  + Z2)i(2n). 

T h e  null hypothesis is H,: T = 112. W e  
are generally interested in a one-sided alter- 
native (either T > 112 or T < 1/2), so we 
employ the power for a one-sided test of a 
normal random variable, namely 

where @ is the cumulative standard normal 
distribution function, and 2, is the normal 
deviate corresponding to an a type 1 error 
probability (in other words, the significance 
level). 

Hence, the required number of sib pairs 
to obtain a power of 1 - p ( the probability 
of rejecting the n ~ ~ l l  hypothesis) is 

W e  also compare the required sample sizes 
for our selected sib-nair avvroach to that of 
a random sib pair design analyzed by Hase- 
man-Elston statistics. In that approach, the 
linear regression model E ( D , ~ T )  = P, + 
 TI is applied, where Df is the squared 
difference of trait values for the ith sib oair, 
p, = 05 + 20; and pl  = - ( 2 4  + 2nl (nz 
- no) oi)/(4n:n2 + n,n, + n,n,). Here, n ,  

is the number of sib pairs sharing i genes ibd 
(i = 0, ! or 2).  From reference (4), the 
estimate p for p, is 

where the D i  correspond to the squared sib- 
pair differences for those pairs sharing i genes 
ibd. For a large number of sib pairs, we 
expect that n, = n, = n/4 and n, = ni2. 
Under this assumption, formula (5)  simpli- 
fies to 

and is approximately normally distributed 
with mean -20:, and variance (45 + 8az(1 
- p)) ,  where p is the residual correlation 
between sibs, and 5 is the variance of DX, 
which is 20: + 8 a f o i  - 4 4  + 4pq[p2(n - 
d)4 + q2(a + d)4 + 8~4pql.  Under the null 
hypothesis (a: = O), P I ,  is distributed with 
mean 0 and variance 16oz(1 - p)/n. T h e  
rejection region for the null hypothesis is 
pl<4Z,o:(1 - P ) / f i ,  and the power is 
given by 

+ 2 0 3 1  - p)' 

Thus, to obtain a power of 1 - P, the 
required number of sib pairs is 

2,  + 2 0 3 1  - p)? - 2Z~10:L(1 - 

0; 

( 7 )  
In Table 2 we have provided the sample sizes 
necessary to detect linkage at a significance 
level a of 0.05 with 80(% power (= 1 - P) 
for an additive genetic model with a = 1, d 
= 0, and o: = 1. Table 2A corresponds to a 
gene frequency p of 0.20, while for Table 2B, 

p = 0.40. In each table, the upper triangle 
corresponds to a residual correlation p = 0, 
and the bottom triangle to p = 0.4. For the 
~najor  locus in Table 2A, the heritability H 
due to this locus is 0.242: in Table 2B. it is 
0.480. Each colulnn and row corresponds to 
a decile of the trait distribution (1  = lowest 
10th percentile, 10 = highest 10th percen- 
tile). T h e  numbers in Table 2A also apply 
for the same model with an allele frequency 
p = 0.80, but with the deciles reversed (for 
example, 1 replaces 10). T h e  same applies to 
Table 2B, but for an allele frequency p = 
0.60. 

T h e  most s t r~k ina  observation is that 
u 

the power to detect linkage is concentrat- 
ed in the  pairs at  the three corners of 
the triangle-those co~ lcorda~ l t  for high 
values, low values, or the extremely dis- 
cordant oairs. Pairs involving individuals " 

with intermediate values (between 30th to  
70th percentile) provide little information 
for linkage analvsis. It is also clear from 
the tables that tlxe uniformly best strategy 
in the  additive case ( in  which a heterozy- 
gote for genes underlying a continuous 
trait has a phenotype halfway between the 
homozygotes) is to  take the  most discor- 
dant  pairs ( in  other words, those with one 
sib in decile 1 and the other in decile 10) .  
T o  exvand the samvle size, a n  alternative 
would be to  take the top and bottom 
20th percentiles, or the top 10'% and bot- 
tom 30%, although this leads to  somewhat 
reduced power. T h e  latter strategy would 
be most useful when a disease is deflned bv 
extreme values of a co~l t inuous trait (for 
example hypertension and the trait of 
blood pressure). In  this example, hyper- 
tension patients ( in  the  top 10th percen- 
tile of blood pressure) could be sampled, 
and those with a sib in the  bottom 30th 
percentile of blood pressure identified). 
Pairs concorda~l t  for high trait values will 
be useful when the allele frequency (p) 

Table 2. Number of sib palrs requred to detect linkage by d e c e  for the additive model. Above the diagonal, p = 0; below the d~agonal, p = 0.4. *,  greater than 
999; *", greater than 9999; *"*, greater than 99999. (A) is for p = 0.2,  and (B) is for p = 0.4. 

decile 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

A 
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decile 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

1 2 3 4 5 6 7 8 9 10 
478 693 "  * "  *"" * * 277 62 

x x * x * x *  * x  * 458 102 

632 * x x *  x * x  x *  * 780 168 
x x x x *  x * x  x *  x * 310 
* * * x *  * x *  x * x  *a "  747 

* " " " *  x * x  * x x  * x *  x * x  x 

x * x *  * * * * 
878 "* "* "  "  x x * r 

283 * * """ * "  * 635 259 
115 346 "  * *"" * * "  73 

49 110 224 523 "  *" * "  539 

19 31 48 77 136 302 * **" 647 121 

declle 

1 

2 

3 

1 

5 

6 

7 

8 

9 

10 



for high 1-alues is lo\\;. However, when the  
allele frequency for high values ia large, 
such pairs \vill be far less useful (for ex- 
ample, when p = 0.8, 661 palra In t he  top 
10'% are necessary, compared to  only 84  
pairs in  the  top and hotto111 10'10). A 
similar argument applies for low trait 
values. 

It should also he noted from these tablea 
that when there is a ~xx i t ive  resiiiual corre- 
lation (for example, when several genes 
interact to  generate the heritability) tlhe 
nolver oi concordallt  airs to detect the 
genes decreases, whereas the  power of dis- 
cordant pairs increases, hecause, when there 
is a positive residual correlation, discorilallt 
pairs have a n  increased probability of heing 
genotypically discorda~lt at the  locus of in- 
terest. W h e n  this resi~iual correlation is 
large the increase in power can be sizeable. 
resulti~lg in a reduction of necessary sanlple 
size of threefold. 

For comparative purposes, if one analyzed 
random sib pairs with the Hasernan-Elston 
approach, with the    nod el in Tahle 2A, 
1,082 sib pairs would he required at p = 0, or 
780 sih pairs at p = 0.40; using o111>- the 
most discoriiallt pairs (top 1001;) and bottom 
lo%) ,  we would require, for p = 0, only 61 
pairs (one eighteenth as many), or for p = 
0.40, only 19 pairs (one forty-first as many). 

Table 3 gives similar results for a ijomi- 
nant  model (a = d = 1, a: = I )  wid1 the  
allele frequency p equal to  0.2 (Table 3 A )  
and 0.6 (Table 3B). Again, a = 0.05 and 1 
- p = 0.80; tlhe upper triangle correspollds 
to p = 0 and the lower triailgle to  p = 0.4. 
As before, svmmetrv indicates that these 
tables also apply to the  recessive case for 
allele frecluencies il = 0.8 and 0.4, where 
the  deciles are inverted in order. T h e  heri- 
tabilities due to the loci of interest in these 
two tables are 0.480 and 0.350, respectively. 

T h e  pattern in Tahle 3 is sinlilar to that 
in  Table 2 in that again the  power to  detect 

linkage is fc7~111d in sih pairs lvillg in the  
three corners of the  triangle. However, 
w h ~ c h  corner provides the  greatest power 
now. depe~lds on the allele frequency. For a 
lo\\; frequency do~n i l l a~ l t  allele (p = 0.2),  
the  discoriia~lt p a r s  are most useful, includ- 
ing the  top and llottom 20th percentile. In 
this case, sibs concordant for high \ d u e s  are 
also useful; those co~ lcorda~ l t  for low. values 
are less so. W h e n  there is a siir~lifica~lt 
residual correlation ( p  = 0.4), the  power of 
discordant pairs is increased; the  power of 
pairs collcorda~lt for high values is now 
reiiuced slightly as 1t is for pairs c o n c o r d a ~ ~ t  
tor low values. 

For a dominant allele, t he  pattern be- 
gins to  change as p increases. As  long as 
the  allele frequency is not  too large (p < 
0.6) ,  discordant pairs are still powerful. 
Again, residual correlation increases the  
power for this group. W h e n  the  residual 
correlation is large ( p  = 0 .4 ) ,  t he  Jiscor- 
dant  pairs are most powerful, even a t  high 
allele frequencies (p = 0.6).  Pairs concor- 
dant  for lo\\; values are informative while 
those concor~iant  for hie11 values are not .  
I11 this case, the  power for these pairs is 
slightly reduced. Thus t h e  discordant pairs 
are always infc~rmative, \\-hereas concor- 
dant  pairs are u~lpredictable.  These con- 
c h ~ s i o ~ l s  also annlv to  the  recessive case. 

L L  , 
W e  also note  that  in  this case, as in  t h e  
additive case, the  use of discoriia~lt sih 
pairs is vastly illore efficient than  using 
r a ~ l d o m  pairs. For low allele frequencies, 
t he  sa~ntlle size ratio is ahout 12 to  1. 
whereas for high allele frecluency it ranges 
fro111 7 to  1 to  40 to  1 d e ~ ~ e n i i i n o  OII t he  
degree of residual correlation. 

Comparison of Double Proband 
with Single Proband Designs 

Carey and Willia~llsol~ (9) suggesteii that the 
power to detect linkage \\;ith a Q T L  could be 

increased hy sa~nplillg sil? pairs through pro- 
hands with extreme values. 111 their design. 
the second sib is selected at random, irre- 
spectlve of hislher trait value. T h e  secolld 
sib's tralt value is regressed (In ibd with the 
proband s ~ h  at a marker locus. Uniier linkage, 
those secolld sibs sharing two alleles ~ b d  with 
the proband should show the highest mean 
trait value, whereas those with 110 alleles ihd 
should regress close to the population mean, 
iiepending on tlhe amount of residual correla- 
tion. W e  refer to this illethoil as the single 
prohand sih pair (SPSP) approach. 

By contrast, we focus o n  sib pairs in 
a ~ h i c h  selection has occurred o n  both sibs' 
trait values. Hence, we refer to this method 
as double proba~lii sib pair (DPSP) analysis. 
T h e  results in Tables 2 and 3 suggest that 
SPSP analysis is still inefficient due to the  
i n c l u s i o ~ ~  of many sibs with intermediate 
vah~es .  W h e n  the  secolld sib falls in the  
20th to  70th percentiles, there is generally 
little deviation from the  null expectation of 
ibd with the  prohand. This finding woulii 
suggest that saillpling o ~ ~ l y  the  corners of 
the table, in particular the  discordant pairs, 
would lead to far greater efficiency. 

T o  coml3are power, we use results pre- 
sented in  (9 )  for 240 sib pairs ascertaineij 
through single probands in  the  top decile, 
with the  other sib a t  random. Their  results 
were generated hy simulations. For the  
DPSP approach, a e  consider three differ- 
en t  strategies, two for discoriiant pairs a11~1 
one  for concordant pairs: ( i )  T I B 1 ,  one  sib 
in  top Jecile,  tlhe other sih in  bottom 
decile; (i i)  T l B 3 ,  one  sib in top decile, t h e  
other  sib in hottom 30'X); (i i i)  T l T 1 ,  both 
sibs in top decile. W e  also assume 740 sib 
pairs, and calculate power as described 
above. Carev and Willialllsol~ collsiiiered 
additive, J o ~ ~ l i l l a l ~ t  allii recessive alleles 
for high trait values with p = 0.2, 0.4, 0 .6  
and 0 .8 ,  with t h e  residual correlation p = 

0.2. W e  evaluated the  same cases. By fix- 

Table 3. Number of sib pairs required to detect linkage by decile for dominant model. Above the diagonal, p = 0: below the diagonal, p = 0.4. ", greater than 
999; "", greater than 9999: *"*. greater than 99999. (A) p = 0.2,  and ( B ) p  = 0.6. 
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ing crf = 1 and allowing a to  vary, we 
obtain the  different heritahilities H due to  
the  locus considered. 

T h e  results of this comparison for the 
additive case are given in Fig. 1. From these 
figures, the  dramatic increase in  power 
when using a DPSP strateg\- is apparent. It 
is clear that the  discordant pairs al~vays 
have highest power, especially for the  T l B l  
group. T h e  pairs concordant for high values 
( T l T 1 )  also well except ~ v h e n  the 
allele frequent\- for high values is large 
(0.8). In  any event, it is clear that if the 
T l B l  strategy is used at low herimhilit\-, the 
po\I2er is three to four times greater than for 
the SPSP strateg\-. Even for the  T1B3 strat- 
egy the power is double that of SPSP. T h e  
situation for a dominant allele is similar. 
T h e  po\ver is dramat~call\- higher for a 
T l B l  strategy across all gene frequencies, 
but is especially so, when the  gene frequen- 
cy is large ( 2 0 . 6 ) .  For gene frequencies less 
than 0.6, T1B3 also performs well, hut 
when the  allele frequency is higher (0.8),  

power is reduced, although still consiiier- 
ahl\- greater than for the  SPSP strateg\-. For 
a recessive allele, the findiqgs are again the 
same, except that when the  allele frequent\- 
is low (0 .2) ,  there is little difference be- 
t\12een the  T l B l  and SPSP strategies. In  this 
case, the  T I T I  strategy is best, because 
these pairs are likely to share two alleles ihd. 

In  Tahle 4 we give the n~llnher of sib 
pairs recl~lired by a T1BI or T1B3 strateg\- 
to achieve the  same po\I2er as the SPSP 
strategy, as a f~lnct ion of heritahilit\- ( H )  
due to the l o c ~ ~ s  of interest and the allele 
frequency (p).  These numbers \\,ere calcu- 
lated with formula (4 ) ,  in which T and Z2 
are deterinined for a sih pair talling in the 
deciles of interest, and 1-P is the  po\I2er of 
the SPSP strategy. It is apparent from this 
table that the r e d ~ ~ c t i o n  in  necessary sample 
size is usually dramatic. For the T l B l  strat- 
egy, there is generally a 6- to 40-fold reduc- 
tion in necessary sample size. T h e  only ex- 
ception is for a rare recessive allele, ~vhere  
the sample sizes are comparable. 

0.0 4 
0.0 0.1 0.2 0.3 0.4 0 . 5 0 . 0  0.1 0.2 0.3 0.4 0.5 

Heritability 

Fig. 1. Comparson of power for 240 s~ngle proband sib pars (bullets) versus double proband sib pairs 
for three double selection strategies in an additive model. Symbols for all panels are as shown for P = 0.2. 

Table 4. Number of DPSPs givng the same power as 240 SPSPs 

Additive model. Dominant model. Recessve model, 

H 
where p = where p = where p = 

0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 

Top 10% and bottom 10% 
0.1 33 55 49 12 39 14 15 14 152 55 38 20 
0.2 48 28 25 17 36 19 12 7 186 80 44 18 
0.3 38 27 21 15 33 19 10 1 1  233 75 38 17 
0.4 32 27 18 14 34 20 10 12 265 57 37 19 

Top 10% and bottom 30% 
0.1 63 121 121 34 78 32 47 86 214 89 75 50 
0.2 85 59 62 51 64 46 42 54 259 113 79 44 
0.3 62 55 51 46 52 43 39 126 328 95 58 40 
0.4 48 55 44 43 45 41 39 141 375 65 49 40 

Sampling Considerations 

LVe have used formula (4)  to deterll~ine 
sample sizes required to detect linkage with 
the different DPSP strategies for a range of 
gene freiluencies, heritabilities, and residual 
correlations 114). Lve find that s a m ~ l e  sizes 
are generally \vithin experilnental limits pro- 
vided the heritability is greater than 0.1. 
Ho\vever, an  irnnortant iluestion remains as 
to ho\v man\- sib pairs need to he screene~l to 
ohtain the desired doubly selected samples. 
If we assume that 01111- one tail of the distri- 
hution is of primary clinical interest, then it 
lnay be possible to access a large n ~ l ~ n b e r  of 
individuals in the extreme 10th percentile 
of that tail fronl clinical or other sources. 
Then,  the question is how inan\- sibs of these 
iniiividuals need to he screened to obtain 
the reuuisite samvle size. W e  have also cal- 
culated these nulnhers (14).  Generally, we 
find that when the heritability due to the 
locus of interest is high ( 2 0 . 5 )  the  number 
of sihs requiring screening is in the lo\\, 
hundreds; for a low heritahilitr- of 0.1. the 
~ n ~ m h e r  is in  the low to middle thousands. 

T h e  feasihility of screening large 11~111- 

hers of individuals \\'ill d e ~ e n d  o n  \vhether 
information o n  the trait is readily available 
(such as for aeight  or height),  or whether 
expensive or invasive testing is required. If 
the limiting factor is the expense of geno- 
typing, but the  sibling rnaterial is easil\- 
obtained, a T1B1 strateg\- is appropriate; o n  
the  other hand, if the sibling material is the 
liiniting resource and the  genotypiilg is in- 
expensive, the T 1  B3 and/or T I T I  strategy 
is Pi-eferred. Perhaps a reasol~able trade-off 
is to collect all the T1B3 and T l T l  sib- 
ships, first type the  T l B l  pairs and then 
collfirnl the initial positive findillgs with 
the  remaining pairs. 

Conclusions 

Our data clearly demonstrate that the only 
design that is uniformly powerful in all ge- 
netic situations is the extreme discordant sib 
pairs. This is because these pairs are unlikely 
to share alleles ihd for any genetic model. 
Sib pairs concordant for extreme values can 
also be useful, but which tail provides the 
power varies ~ v i t h  the conditions. As a gen- 
eral rule, it is the tail correspondil~g to the 
lolver allele frequency that is useful; howev- 
er, the degree to which this is the case 
depends o n  dominance. For an  additive lo- 
cus, hoth tails are usef~ll \\'hen the allele 
frequencies are equal, hut when one allele 
drops helow 0.3 in frequent\-, only that tail 
should be sampled. For a locus dominant for 
high values, sampling the  upper tail is useful 
up to an  allele frequency of ahout 0.3; oth- 
er\vise, the lower tail should be sampled. 
Similarly, for a hcus  that is recessive for 
high values, sampling the  upper tail is useful 
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up to a n  allele frequent\- of around 0.7. 
When  studying a trait where only one 

tail is of clinical significance (such as blood 
pressure or weight), it is tempting to sample 
sib pairs concordant for that tail. This will 
he aarticularlv so \ \hen the distribution 
sho\;,s skewness to\vard the end with clini- 
cal significance. Ske\vness can be an  indi- 
cator of a major gene with a n  allele of low 
frequency. If such is the case, sainpling sib 
pairs concordant for that tail \vill be a prac- 
tical strategy. However, if the skewness is 
due to other reasons (such as llollgelletic 
reasons) this strategy could fail. Further- 
more, this strategy \vould not he po~verful to 
identify other contributine loci that do not  

skewness. 
Historically, investigators have usually 

searched for rare alleles in the population. 
For many traits, there ~vi l l  be ~u~ l l t ip l e  genes 
underlying variation. These genes may well 
have high allele frequencies and the strate- 
gies used for rare genes cannot be applied. 
In  general, the only design with power to 
detect all these genes, irrespective of allele 
frequencies and degree of dominance, is the 
discordant pairs. 

A question that often arises in  sib pair 
analysis is what to do with additional sibs 
beyokd the pair. Given the severity of the  
selection cfiterion, we would not  expect 
many families to have multiple siblings 
meeting the  criteria. However, we did ex- 
amine the case of sib trios, where one sib 
was in the top 10% and the  other two sibs 
in  the  bottom 10% or bottom 30%, respec- 
tively. W e  examined identity by descent for 
the  two discordant pairs, which are statisti- 
cally independent. W e  found (14) that the  
power was essentially the  same as for two 
unrelated sib pairs; in other v,~ords, the ex- 
pected deviation of numher of alleles ibd 
from the  llull hypothesis for each of the two 
pairs was the same as for two single pair 

sibships. Thus, any families with multiple 
sibs of a proband meeting criteria sho~lld be 
included for analysis; all qualifying pairs 
that inch~de  the prohand can he included as 
independent pairs. 

Another question is \vhether this ap- 
proach can he extended to qualitative traits 
or disease states in which a n  individual is 
either affected or not  affected. T h e  key is to 
define indi\,iduals who lie at the opposite 
end of the putative distrihution underlying 
the  disease. It is not  sufficient to siinply use 
aficcted/unafiected pairs, because there will 
be a raqge of values classified as unaffected. 
However, if it is possible to define a con- 
tinuous trait associated \vith disease, then it 
ma\- be possible to define individuals at the 
opposite end of this continun~in. 

T h e  po\I2er to detect linkage with dis- 
cordant sib pairs increases in  the  presence 
of a residual sib correlation, especiall\- a t  
low heritahility for the  tested locus, 
\\,hereas concordallt pairs sho\v a decrease 
in  po\I2er. ( I n  simpler terms, if siblings are 
discordant in  the  presence of other genes 
that cause them to be similar, t hen  they 
are more likel\- t o  be discordant a t  any 
contributing Incus.) T h e  two major deter- 
ininants of power to  detect linkage for a 
locus contrihuting to  a quantitative trait 
are the  heritahility due to  that  locus and 
the  residual correlation. Because the  pow- 
er to detect a weak locus increases with 
residual correlation, using discordant pairs 
should make it possihle to  detect such loci 
provided the  total heritability (due to the  
tested locus and the  residual correlation) 
is high enough. Thus,  it appears tha t  total 
heritability may be a more important fac- 
tor than  the  number of loci contributing 
to  tha t  total. Our  calculations suggest 
that ,  m711en the  total heritability is in  the  
range of 30%, there will be sufficient pow- 
er to detect linkage if t he  genetic variation 

is primarily attributable to three or fewer 
loci; a t  50% total heritahility, five or  fewer 
loci lvould he detectable. 

Finall\-, we note that the extreme discor- 
dant sib pairs represent a po\verf~~l design 
for association studies of candidate eenes 
( 1  4). Thus, the same sample can be used for 
linkage and association studies. 

T h e  recent interest in identif\-ing genes 
for quantitative traits necessitates the de- 
velopment of po~verf~l l  methods for tackling 
this task. LVe have sho\vn that judicious 
sample selection, in particular the  use of 
extreme discordant sib pairs, should facili- 
tate this endeavor. This approach ma\- en- 
able investigators to identify genes inl,olved 
in complex traits such as hypertension, obe- 
sity, or behavior that would not have been 
possible with other study designs. 
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