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Chemical Characterization of a Family of 
Brain Lipids That Induce Sleep 

Benjamin F. Cravatt, Oscar Prospero-Garcia, Gary Siuzdak, 
Norton B. Gilula, Steven J. Henriksen, Dale L. Boger," 

Richard A. Lerner* 

A molecule isolated from the cerebrospinal fluid of sleep-deprived cats has been 
chemically characterized and identified as cis-9,lO-octadecenoamide. Other fatty acid 
primary amides in addition to cis-9,lO-octadecenoamide were identified as natural 
constituents of the cerebrospinal fluid of cat, rat, and human, indicating that these 
compounds compose a distinct family of brain lipids. Synthetic cis-9,l O-octadeceno- 
amide induced physiological sleep when injected into rats. Together, these results 
suggest that fatty acid primary amides may represent a previously unrecognized class 
of biological signaling molecules. 

T h e  pursuit of endogenous sleep-inducing 
substances has been the focus of an exten- 
sive, complicated body of research ( 1  ). Sev- 
eral compounds, including delta-sleep-in- 
ducing-peptide (2) and prostaglandin PGD2 
( 3 ) ,  have been suggested to play a role in 
sleep induction, and yet, the molecular 
mechanisms of this physiological process 
remain largely unknown. We  analyzed the 
cerebrospinal fluid of cats in search of com- 

pounds that accumulated during sleep de- 
privation. A molecule with the chemical 
formula C,,H3,N0 was isolated from the 
cerebrospinal fluid of sleep-deprived cats 
(4). The compound's structural features, 
two degrees of unsaturation, a long alkyl 
chain, and a nitrogen substituent capable of 
primary fragmentation as ammonia, were 
most compatible with either a nonconju- 
gated diene in which a primary amine was 
allylic (4) or a monoinsaturated alkane 

B. F. Cravatt, G. Siuzdak, D. L. Boger, R. A, Lerner, 
Department of Chernlsiry, Scripps Research lnsttute, La chain terminating in a primA;y amidf? (5). 
Jolla. CA 92307. USA. Initial electros~rav mass analvsis of the , - -  L ,  

0. ~ ; i s p e i - ~ a r c l a  and S. J. Henrlksen, Department of natural compound revealed mass peaks of 
Neuropharmacology, Scrlpps Research Institute, La 
Jolla, CA 92307, USA. mlz 282 ([M + HI+), 304 ([M + Na]+), 
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search Institute, i a  Jolla, CA 92307, U ~ A .  indicating that the molecular mass of the 
*To whom correspondence should be addressed compound was 281 daltons (4). High-reso- 

lution fast atom bombardment-mass spec- 
trometry (FAB-MS) analysis indicated that 
the exact mass measurement of the [M + 
Na]+ ion was m/z 304.2614 +- 0.0006 dal- 
tons. This measurement allowed for the 
determination of elemental composition 
and a best fit for the molecular formula 
C1,H3,N0, which has a calculated [M + 
Na]+ mlz of 304.2616 daltons. Tandem 
mass spectrometry analysis (MS-MS or 
MS2) revealed a distinctive fragmentation 
pattern in the low molecular mass range 
consistent with other long chain alkanes 
(Fig. 1A). Sequential neutral loss of 17 and 
35 mass units from the parent ion indicated 
the loss of ammonia followed by the loss of 
water. Additional MS3 experiments were 
performed on the daughter ions of ml?: 265 
and 247 (4). 

Such MS2 and MS3 analyses were also 
performed on various synthetic candidate 
structures (6), and although several prod- 
ucts gave spectra quite similar to those of 
the natural compound, only the fragmenta- 
tion patterns generated from monounsat- 
urated fatty acid amides, such as cis-9,lO- 
octadecenoamide (Fig. lB), matched exact- 
ly those of the endogenous lipid. Of interest 
was the neutral loss of 17 mass units from 
the parent ion of cis-9,lO-octadecenoamide, 
indicating that the molecule first fragments 
at the carbon-nitrogen bond of its terminal 
amide group to release ammonia. Mass anal- 
ysis also identified a compound from the 
cerebrospinal fluid of human and rat with 
the molecular formula C2,H,,N0 with 
MS2 and MS3 fragmentation patterns indis- 
tinguishable from those of synthetic cis- 
13,14-docosenoamide (Fig. 1, C and D) (7). 

Cis-9,lO-octadecenoamide and the C,, 
natural lipid exhibited identical elution 
properties on thin-layer chromatography 
(TLC) (8) and gas chromatography-mass 
spectrometry (GC-MS) (9). However, 
these techniques proved insensitive to the 
position and configuration of the olefin of 
closely related synthetic fatty acid amides, 
and the cis-8,9- (Fig. 2, 3 ) ,  cis-9,lO- ( I ) ,  
cis-1 1,12- (4), and trans-9,lO- (2) octade- 
cenoamides were not distinguishable from 
the natural compound by TLC and G C  
(10). Through infrared (IR) spectroscopy, 
nuclear magnetic resonance (NMR) spec- 
troscopy, and chemical degradation proce- 
dures, the exact structure of the endogenous 
lipid, including the position and configura- 
tion of its olefin, was unambiguously deter- 
mined. The position of the double bond 
along the alkyl chain of the natural com- 
pound was determined by ozonolysis (1 1). 
GC-MS analysis of the ozonolysis reaction 
mixture derived from the natural lipid re- 
vealed nonyl aldehyde as the only CHI- 
terminal aldehyde present. Nonyl aldehyde 
corresponds to an olefin located at the 9,10 
position of the C,, fatty acid primary amide. 
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Fig. 1. Electrospray ioniza- 
tion tandem mass spectral 
data obtained for the natu- 
ral compounds isolated 
from cerebrospinal fluid of 
sleep-depr~ved cats and 
their synthetic versions. 

Spectra In (A) and (C) rep- 
resent the fragmentation 
data obta~ned for the natu- 
ral C,, and C,, agents, re- 
spectively. Spectra in (B) 
and (D) represent the frag- 
mentation data obtained 
for synthetF cis-9,lO-octa- 
decenoamide and cis- 
13,14-docosenoamide, re- 
spectively. The electro- 
spray experiments were 
performed with an API I l l  
Perkin-Elmer SCIEX triple- 
quadrupole mass spec- 
trometer. 

2. Synthetic C,, amide .- 
U) 

0 - .- 
a! .- - - 
d 

The 1R spectrum of the natural com- 
pound (neat) exhibited absorbances at 3354 
and 3320 (amide N-H stretches), 2923 and 
2851 (alkane stretches), 1656 and 1630 
(amide I and 11 bands), 1466, and 1410 
cmpl. Although cis-9,10-octadecenoamide 
gave a Fourier transform IR spectrum iden- 
tical to that of the natural agent, a single 
characteristic difference was observed in 
the 1R spectra of the endogenous lipid and 
trans-9,lO-octadecenoamide: The trans iso- 
mer exhibited an additional strong absorp- 
tion peak at 960 cm-'. Neither the natural 
compound nor cis-9,lO-octadecenoamide 
exhibited this 1R absorption band charac- 
teristic of disubstituted trans alkenes (12). 

Approximately 300 kg of the endoge- 
nous lipid (13) was used in NMR analysis. 
The 'H NMR spectrum (CD,OD, 400 
MHz) exhibited the following peaks: 6 5.24 
(multiplet, 2H, olefinic protons), 6 2.09 
[triplet, 2H, H,NC(O)CH,], 6 1.93 (multi- 
plet, 4H, allylic protons), 6 1.50 [multiplet, 
2H, H2NC(0)CH2CH2],  S 1.50 to 1.23 
(multiplet, alkyl methlyene protons), and 6 
0.805 (triplet, 3H, CHJ. When compared 
with the 'H  NMR spectra of trans- and 
cis-9,10-octadecenoamide, the natural com- 
pound and cis-9,10-octadecenoamide were 
identical and definitively different from 
trans-9,lO-octadecenoamide (Fig. 3 ) ,  Sam- 
ples of the natural lipid and cis-9,lO-octa- 
decenoamide were distinguishable from the 
trans isomer in both the olefinic and allylic 
regions of the 'H NMR spectrum. Whereas 
the olefinic protons of the trans isomer 
reside at 6 5.28 in CDIOD, the olefinic 

Synthetic C,, amide 

protons of the natural compound and the 
cis isomer are shifted slightly upfield to 6 
5.24. In the allylic region of the NMR 
spectrum, both the natural compound and 
the synthetic cis isomer have a four-proton 
peak ranging from 6 1.94 to 1.91, whereas 
the allylic protons of the trans isomer are 
observed at 6 1.88 to 1.86. Trace amounts 
of the trans fatty acid amide do appear to be 
present as well in the natural sample, indi- 
cating perhaps that this agent is also an 
endogenous constituent of the brain. Thus, 
through the use of MS, GC, TLC, IR, 
NMR, and ozonolysis the structure of the 
unknown natural lipid was determined to 
be cis-9,10-octadecenoamide (Fig. 2, 1 ). 

Svnthetic cis-9.10-octadecenoamide was 
injected (intraperitoneal) into rats [ l  (n = 

2), 2 (n = 2), 5 (n = 7) ,  10 (n = lo ) ,  20 (n 
= 2), and 50 (n = 2) mg, where n is the 
number of rats tested] during a reversed 
dark period (12 hours of light:12 hours of 
dark) 2 hours after the lights cvcled off. The " ,  
lower doses (1 and 2 mg) produced no overt 
effect on spontaneous behavior. However, 
with doses of 5 mg and above there was an 
induction of long-lasting motor quiescence 
associated with closed eyes and sedated be- 
havior characteristic of normal sleep (14). 
As in normal sleep, the rats still responded 
to auditory stimuli with an orienting reflex 
and sustained attention toward the source 
of stimulation. The latency to behavioral 
sedation was about 4 min. and the subiects 
were normally active again after 1 hour (5 
mg), 2 hours (10 mg), or 2.5. hours (20 and 
50 mg). A n  intraventricular injection of 2.8 

kg (10 nmol, n = 2) of synthetic cis-9,lO- 
octadecenoamide also induced electro- 
physiologic~lly monitored sleep, indicating 
that the agent acts directly in the brain at a 
dose comparable with other known effector 
molecules (1 ). 

We have compared the sleep-inducing 
properties of cis-9,10-octadecenoamide to 
those of the vehicle and synthetic analogs 
to estimate the structural basis for the 
biological effect. Neither the vehicle (5% 
ethanol in saline solution) nor oleic acid 
(5) showed any overt behavioral effect or 
modified the spontaneous sleep-wake cy- 
cle. Trans-9,10-octadecenoamide (2)  ex- 
hibited similar pharmacological effects to 
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Fig. 2. Structures of natural agent cis-9,lO-octa- 
decenoamide (1) and related analogs (2 to 6). 
Compound 6 is the proposed structure of natural- 
ly occurring C,, fatty acid primary amide. 
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Fig. 3. 'H NMR spectra of (A) synthetic cis-9,lO-octadecenoamide, 
(B) the natural compound, and (C) synthetic trans-9,lO-octade- 
cenoamide. Expanded are the regions of the spectra that distinguish 
between the cis and trans isomers (olefinic protons from 6 5.3 to 5.2 
and allylic protons from 6 2.0 to 1.8). These regions identify the 
natural compound as cis-9,lO-octadecenoamide. The asterisk in 
(B) indicates an impurity. 
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its cis counterpart, but it was much less 
potent, as measured by the comparatively 
shorter duration time for its slee~-inducine - 
properties (at 10 mg per rat, the biological 
effect lasted 1 hour for the trans isomer and 
2 hours for the cis isomer). Moving the 
olefin either direction along the alkyl chain 
[to the 8,9 (3) or 11,12 (4) positions] or 
extending the alkyl chain length to 22 car- 
bons (6 )  substantiallv reduced both the de- . , 
gree and duration of the effect, and although 
the mobilitv of the rats still decreased. their 
eyes remained open and their alertness was 
onlv sliehtlv affected. , - ,  

The biological concentration of neuro- 
active signaling molecules should expect- 
ably adhere to tight regulation. To  evalu- 
ate this possibility, we searched for an 
enzymatic activity capable of degrading 
the putative effector molecule, cis-9,lO- 
octadecenoamide (15). Rapid conversion 
of 14C-labeled cis-9,lO-octadecenoamide 
to oleic acid by rat brain membrane frac- 
tions (16) was observed by TLC (Fig. 4). 
The enzymatic activity was unaffected by 
5 mM EDTA but was completely inhibited 
by 1 mM phenylmethylsulfonyl fluoride 

-99 
NNN 

Chemlcal shlft (ppm) 

Lane 1 2 3 4 5 6 7 8  

Fig. 4. Cis-9,lO-octadecenoamide hydrolysis to 
oleic acid by rat brain membrane fractions. TLC 
(SiO, sorbent and a solvent of 55% ethyl acetate 
in hexanes) analysis: Lane 1, cis-9,l O-octade- 
cenoamide standard; lane 2, cis-9,lO-octade- 
cenoamide with rat brain soluble fraction; lane 3, 
cis-9,lO-octadecenoamide with rat brain mem- 
brane fraction; lane 4, cis-9,1 O-octadeceno- 
amide with rat brain membrane fraction plus 
1 mM PMSF; lane 5, cis-9,lO-octadecenoamide 
with rat brain membrane fraction plus 5 mM 
EDTA; lane 6, cis-9,lO-octadecenoamide with rat 
pancreatic microsomes; lane 7, cis-9,1 O-octade- 
cenoamide with proteinase K (200 kg); and lane 
8, oleic acid standard. 
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(PMSF). Only trace amide hydrolysis ac- 
tivity was observed with rat brain soluble 
fractions, whereas rat pancreatic micro- 
somes and proteinase K showed n o  signif- 
icant capacity to hydrolyze cis-9,lO-octa- 
decenoamide to oleic acid. 

The  fattv acid amides we have studied 
belong to a family of simple molecules in 
which a great deal of diversity may be gen- 
erated by simply varying the length of the 
alkane chain and the oosition, the stereo- 
chemistry, and the nimber of its olefins. 
Other neuroactive signaling molecules with 
arnide mbdifications at their COOH-termi- 
ni have been reported, from carboxarnide 
terminal peptides (17) to arachidonyleth- 
anolamide (18). Perhaps cis-9,lO-octade- 
cenoamide is a member of a class of biolog- 
ical effector molecules in which simple vari- 
ations of a core chemical structure have 
distinct physiological consequences. Alter- 
natively, given the enzymatic hydrolysis of 
cis-9,lO-octadecenoarnide by rat brain 
membranes. we cannot exclude the oossi- 
bility that the liberated ammonia or 'other 
modifications of the agent mav be in- 
volved in the"effector fikction. ' 
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