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Colon Cancer Cells with Microsatellite Instability

Sanford Markowitz,* Jing Wang,t Lois Myeroff,
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Transforming growth factor— ( TGF-) is a potent inhibitor of epithelial cell growth. Human
colon cancer cell lines with high rates of microsatellite instability were found to harbor
mutations in the type Il TGF-B receptor (RIl) gene. Eight such examples, due to three
different mutations, were identified. The mutations were clustered within small repeated
sequences in the Rll gene, were accompanied by the absence of cell surface Rl receptors,
and were usually associated with small amounts of Rl transcript. RIl mutation, by inducing
the escape of cells from TGF-B-mediated growth control, links DNA repair defects with

a specific pathway of tumor progression.

TGF-B inhibits the growth of multiple ep-
ithelial cell types, and loss of this negative
regulation is thought to contribute to tumor
development (1-5). Studies have shown that
TGE-B suppresses the growth of certain can-
cer cell lines, that antisense inhibition of
TGF-B enhances the tumorigenicity of
weakly tumorigenic cancer cell lines, and
that certain tumor cells can become unre-
sponsive to TGF-B (2-5). The TGF-B
growth inhibitory signal is transduced
through two receptors, type 1 (RI) and type
II (RII), which function as a heteromeric
complex (6, 7). We investigated whether
inactivation of TGF-B receptors is a mech-
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anism by which human colon cancer cells
lose responsiveness to TGF-B. We found
that RII receptors were inactivated in a sub-
set of colon cancer cell lines. RII inactiva-
tion was common in tumor cells exhibiting
microsatellite instability (hereafter referred
to as RER™, for “replication errors”), but not
in RER™ cells (8).

We initially examined the expression of
RI and RII transcripts in 38 human colon
tumor cell lines using a ribonuclease
(RNase) protection assay. Rl transcripts
were detected in all samples, whereas RII
transcripts were undetectable or present at
markedly reduced amounts in 12 (32%) of
the samples (Fig. 1, A and B). For unrelated
purposes, we had independently assayed
these cell lines for the RER phenotype. Nine
of 11 RER" but only 3 of 27 RER™ cell lines
showed reduced RII expression (Fig. 1B)
(9-11). This correlation was highly signifi-
cant [probability (P) <0.001 by x? test].
Southern (DNA) blot analysis indicated
that loss of the RII transcript in the RER*
cells was unlikely to be due to deletions or
rearrangements of the RII gene (12).

To show that RII inactivation in the
RER™ cells was not simply a trait selected for
during cell culture, we examined RII expres-
sion in tumor xenografts that had been de-
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Fig. 1. (A) Expression of Rl and RiIl transcripts in RER* and RER~ human colon
cancer cell lines. Expression of Rl and Rl was examined by an RNase protection
assay (74). Total RNA (40 pg) from each sample was hybridized overnight in a
single reaction to probe for RI, Rll, and human «y-actin. Shown is the autoradio-
gram of a 7M urea—6% acrylamide gel displaying the reaction products. The Rl
probe (RlIp) protects a tight doublet of approximately 274 base pairs, and the RI
probe (Rlp) protects a 222-base pair fragment. The control y-actin probe (Actin-p)
protected a 126-bp fragment. The colon cancer cell lines are indicated above the
lanes, with the VACO group of cell lines indicated by the prefix V. A control reaction
displays the protection pattern generated by yeast tRNA. The two panels show
results from two independent experiments. The sizes of the molecular markers are
given in base pairs. (B) Quantitation of Rl and Rl transcript expression in 38 human
colon cancer cell lines. RNase protection patterns [as in (A)] were quantitated by
laser densitometry. The relative transcript expression in arbitrary optical density
units is indicated for 11 RER* and 27 RER- cell lines. Variations in sample loading
were corrected by normalizing samples for their relative expression of human
~y-actin. Arrows show the mean level of receptor expression for RER™* (filled arrow)
and RER- cells (open arrow). The broken line indicates the limit at which the naked
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rived from 30 human colon cancers by im-
plantation into athymic mice (13). RII tran-
scripts were abundant in 25 of 27 RER~
xenografts but absent in three of three RER*
xenografts (Fig. 2). These three RER™ xe-
nografts were established from the same tu-
mors as were three RER* immortalized cell
lines, which also lacked RII transcript ex-
pression (Fig. 2). Loss of RII transcript was
thus not an artifact of in vitro culture of the
RER™ cell lines.

To assay for the expression of cell surface
TGE-B receptors, we performed cross-link-
ing experiments with !2°I-labeled TGF-B
(14, 15). There was no detectable '#°I-
TGE-B binding to any of eight RER™ cell
lines with reduced amounts of RII transcript
(Fig. 3). The absence of RI surface receptors
in these lines (Fig. 3) is consistent with
previous reports that RII receptor is re-
quired for TGF-B binding to RI (7, 14). A
third TGF-B receptor (RIII) is expressed in
most RER* and RER ™ cell lines (Fig. 3), but
it is likely without physiologic consequence,
as it is thought to function only in the
presentation of ligand to RI and RII (16).

The RI and RII cell surface receptors
were also undetectable in VACO481 cells,
one of the two RER* cell lines with normal
amounts of RI and RII transcripts. Al-
though mutations in RII abolish TGF-B
binding to both RI and RII, mutations in RI

Optical d

RI
RER™

apparently do not affect TGF-B binding to
RII (7, 17). Thus, the absence of both RI
and RII cell surface receptors from
VACO481 cells is most easily explained by
an RII mutation. A presumptive mutation
was identified in an assay of RII protein
synthesized in vitro (18) and then con-
firmed by sequence analysis of the complete
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Fig. 2. Rl transcript expression in colon cancer
xenografts. RNase protection assays were used
to measure expression of RIl and -+y-actin
transcripts in xenografts (labeled X) established
from seven different human colon tumors. Lanes
labeled L contain samples from immortal cell
lines established from the same tumors as
the xenografts and are shown for comparison of
RIl expression. A control reaction displays
the protection pattern generated by yeast tRNA
(labeled Y).
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T

Colon cancer cell lines

VACO481 RIl complementary DNA
(cDNA). This analysis revealed a GT in-
sertion into a six—base pair (bp) GT-
GTGT repeat at nucleotides 1931 to 1936
(Fig. 4) and the absence of any normal
sequence (I8). The resulting frameshift
was predicted to substitute a highly basic,
29 -amino acid COOH-terminus for the

Fig. 3. Expression of cell surface TGF-B receptors
in RER* and RER~ human colon cancer cell lines
(74). The VACO group of colon cancer cell lines
are indicated by the prefix V. The two panels show
results of two independent experiments.
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Fig. 4. Mutant RIl sequences in
RER* tumor cell lines. Mutant se-
quences shown are for cell lines
VACO481, which has a GT inser-
tion at wild-type nucleotides 1931

vasi
CTAG

| =
s+ TN Vs

t0 1936, and VAC0457 and RKO, in which one or two bases, respectively, have been deleted at wild-type
nucleotides 709 to 718. VACO cell lines are designated by the prefix V. The normal polyadenine sequence
(nucleotides 709 to 718) is displayed in the lanes labeled N. Sequencing reactions were primed on the
antisense strand; therefore, juxtaposed sequences are in register relative to their 3’ ends. Sequences
shown are those of the directly sequenced PCR-amplified products (VACO481, VACO457) or of a
representative mutant clone of the PCR-amplified RIl cDNA (RKO).

slightly acidic 33-amino acid wild-type
COOH-terminus (19). The same RII
frameshift mutation was also detected in
the primary colon tumor from which the
VACOA481 cell line was established, but
not in normal colon tissue from the same
patient, indicating that the mutation was
somatic and that it occurred before cell
culture.

Frameshift mutations located in the 5’
half of mMRNA transcripts have been associ-
ated with decreased mRNA stability (20).
To search for this type of mutation, we
sequenced the 5’ half of the RII cDNA from
seven additional RER* cell lines in which
RII transcripts, though markedly reduced,
could be recovered by reverse transcriptase—
polymerase chain reaction (RT-PCR). In
each of these cell lines an RII frameshift
mutarion was found (Fig. 4) (12). The mu-
tations appeared homozygous (no wild-type
5' sequences were detected) in four cell
lines, and heterozygous in the three others.
The mutations were all located within a
sequence of 10 repeating adenines (nucle-
otides 709 to 718), which was truncated by
either one base (four cell lines) or two bases
(three cell lines) (Fig. 4). The RII genes
with these one- and two-base deletions were
predicted to encode truncated receptors of
161 amino acids and 129 amino acids, re-
spectively. For three of these seven RER™
cell lines studied, there were primary colon
tumors or tumor xenografts available. In
each case, the same RII mutation present in
the cell line was also present in the tumor
sample. In two cases normal colon tissue was
also available and was shown not to harbor
an RII mutation.

In contrast to the RER™* colon cell lines,
only a minority of RER~ cell lines showed
inactivation of TGF-f receptors. The RER~
cell lines had RI and RII transcripts in 90%
(24 of 27) (Fig. 1), RI and RII cell surface
receptors in 86% (6 of 7) (Fig. 2), and
growth inhibition by TGF-B in 100% (5 of
5) of the samples studied (4, 12).

The RER* samples (cell lines and xe-
nografts) in this study were derived from
predominantly right-sided (eight of nine
evaluable), often metastatic (five of nine
evaluable) colon cancers. However, the
RER™ samples also included 17 right-sided
colon cancers (none with RII loss) and 32
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metastatic colon cancers (only two with RII
loss). Thus, loss of RII was characteristic of a
cancer’s RER phenotype rather than its site
of origin or clinical stage. Included among
our RER" samples were two cell lines estab-
lished from familial colon cancers (heredi-
tary nonpolyposis colorectal cancer), six cell
lines derived from sporadic colon cancers
(8), five cell lines bearing mutations in a
known mismatch repair gene, and four cell
lines bearing only wild-type versions of these
genes (10, 21). The type 11 TGF-B receptor
was thus a target for inactivation in each of
the currently identified subsets of RER ™ co-
lon cancers (8, 10, 21).

Deletions and insertions in simple repeat-
ed sequences occur throughout the genome
of RER™" tumors (8). However, inactivation
of RII is likely to be a critical step in tumor
progression rather than a simple correlate of
the RER™ phenotype. TGF- is expressed by
normal colon epithelium (22), by malignant
colon epithelium (22), and by most colon
cancer cell lines (23). It also abolishes the in
vitro proliferation of early colon neoplasms
(2, 12). Concordantly, RII inactivation in-
duces escape from TGF-B—mediated growth
inhibition in several cell types (5, 7, 17).
Moreover, restoration of wild-type RII ex-
pression by gene transfection suppresses the
in vivo tumorigenicity of receptor-negative
breast and colon cancer cell lines (12, 14).
RII inactivation should thus directly confer a
growth advantage on RER* tumors.

Mutations in the type Il TGF-B recep-
tor thus link DNA repair defects with a
demonstrable pathophysiologic event. We
hypothesize that small repeat sequences in
the RII gene make it a favorable target for
RER*-associated mutator mechanisms.
Once generated, the proliferative advan-
tage of cells with inactivated RII would
drive colon tumor progression. This path-
way may also be operative in other human
malignancies in which the RER* pheno-
type has been detected [reviewed in (24)].
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