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Anharmonic Wave Functions of Proteins:
Quantum Self-Consistent Field
Calculations of BPTI

Adrian Roitberg, R. Benny Gerber, Ron Elber, Mark A. Ratner*

The harmonic approximation for the potential energy of proteins is known to be inade-
quate for the calculation of many protein properties. To study the effect of anharmonic
terms on protein vibrations, the anharmonic wave functions for the ground state and
low-lying excited states of the bovine pancreatic trypsin inhibitor (BPTI) were calculated.
The results suggest that anharmonic treatments are essential for protein vibrational
spectroscopy. The calculation uses the vibrational self-consistent field approximation,
which includes anharmonicity and interaction among modes in a mean-field sense.
Properties obtained include the quantum coordinate fluctuations, zero-point energies,

and the vibrational absorption spectrum.

Quantitative understanding of the physical
properties of proteins at low temperatures
inherently requires quantum mechanical
treatment. For instance, quantum calcula-
tions are essential for the quantitative anal-
ysis of vibrational spectroscopy; low-tem-
perature Debye-Waller attenuation factors
of x-ray scattering intensities are subject to
large quantum effects; the issue of tunneling
states in proteins is a purely quantum me-
chanical area; and zero-point energy effects
are expected to play a major role in protein
energetics and in the interaction of proteins
with water molecules.

Quantum treatment of protein vibra-
tions was hitherto carried out mostly at the
level of harmonic normal mode treatments.
However, the many large-amplitude, low-
frequency modes of proteins, the “softness”
of available protein potential functions for
many types of displacements, and the many
nearly equivalent minima of these poten-
tials (1, 2) all suggest the inadequacy of the
harmonic approximation for proteins. Ef-
forts to include some anharmonic effects in
a quantum framework (3) did not include
quantities such as wave functions, which
are essential for spectroscopy.

In this report, we put forward a quanti-
tatively adequate, practically feasible ap-
proach for computing the ground and the
low-lying vibrational eigenfunctions of pro-
teins. We use the vibrational self-consistent
field (SCF) method, which includes the
effects of anharmonic interactions between
the different normal modes in an approxi-
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mate framework (4), to analyze a model
potential of a solvated protein, the bovine
pancreatic trypsin inhibitor (BPTI). We
present arguments why this approximation
should be reasonably good for the ground
and low-lying excited states considered
here. The calculated ground-state and ex-
cited-state vibrational wave functions of
the system, and the resulting vibrational
absorption spectrum, illustrate the feasibil-
ity of quantitative theoretical treatment of
protein properties. We also calculate several
other properties, such as the zero-point en-
ergies and the amplitudes (or position fluc-
tuations) of the various modes, to assess the
importance of the quantum effects. Finally,
we compare our calculations with results in
the framework of the harmonic normal
mode model, to throw light on the limita-
tions of this important approximation.

The BPTI protein inhibits trypsin by
tightly binding to it at Lys">. It contains 58
amino acids with three disulfide bonds in
the native form. It has been extensively
studied and has been established as a regular
test case to which new methods for under-
standing protein structure and dynamics are
applied. In particular, normal mode analysis
of BPTI has been carried out by several
groups (5-10), and neutron scattering has
been used to examine its very low frequency
vibrational motions (5, 11).

The dynamics and potential energy of
the system were studied with the program
MOIL (12, 13). Although there is no guar-
antee that this potential is sufficiently ac-
curate to predict spectra, it does provide an
attractive standard potential model for test-
ing the extent to which quantum and an-
harmonic effects in the potential change
the observable properties of the molecule.
The total number of “atoms” in the system
was 1147, corresponding to 3441 degrees of
freedom, or a 3435-dimensional wave func-
tion when the rigid-body constraints are
included.
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We treated anharmonicities by expand-
ing the Hamiltonian to fourth order in the
normal coordinate set (14). This gives
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The entire Hamiltonian is expressed in
terms of the normal coordinates Q,, which
were calculated by direct diagonalization of
the full mass-weighted quadratic potential
expressed in cartesian coordinates. The
terms Ty, V i, and V,§3 and V,$%) represent,
respectively, the kinetic energy in the kth
mode, the force constant for the kth mode,
and cubic off-diagonal anharmonicity coef-
ficients. The V], V,$3), and V() are partial
derivatives of the full potential, evaluated
at the minimum. The required third and
fourth derivatives were calculated as finite
differences from the second derivative ma-
trix; this calculation proved to be numeri-
cally stable.

The quartic approximation for the po-
tential should be adequate here because our
focus is on the vibrational ground state and
the lowest excitations (single quantum)
only. For these low-lying states, the quartic
approximation is probably valid even for
low-frequency torsional modes. The quartic
level is expected to break down for higher
excitations and is not valid for proteins at
room temperature. Support for the validity
of the quartic expansion of low-frequency
modes was obtained by exploration of the
exact energy surface along these coordi-
nates. A favorable comparison to the quar-
tic expansion was obtained.

The SCF technique retains the normal
coordinate notion of mode separability,
while including diagonal anharmonic ef-
fects exactly and off-diagonal effects in a
mean-field sense. In the vibrational SCF
model, the Hamiltonian is expressed in
terms of some independent mode Hamilto-
nians, and the overall wave function is then
a simple Hartree product of single-mode
wave functions. That is, we take for the
n-mode wave function the trial form
VQ, ... Q,) = B(Q) - D,(Q,) D(Q,)
. D (Q,). With these single-mode wave
functions, the effective single-particle Ham-
iltonians are self-consistently redetermined
until convergence is reached. The method is
described extensively elsewhere (3, 15-17).
Vibrational SCF was used for quartic poten-
tials in the case of formaldehyde (18).

When the SCF procedure is applied to
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the Hamiltonian, we obtain for mode k the
following expression for the mean-field po-
tential energy
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VilQuw = 7 Vit + 6 VIQi + 57 VilQ!
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Here, the averaged values (Q)) and (Q/) are
evaluated over the single-mode eigenfunc-
tion ®(Q),), which satisfies the single-mode
SCF equation

(Ti+V, —g)® =0 (3)

Three sets of calculations were per-
formed. In the first, only the harmonic nor-
mal modes were used. The second included
the diagonal anharmonic cubic and quartic
terms. The third involved diagonal as well as
off-diagonal terms with the SCF treatment
averaged over the lowest 88 modes (19).

Figure 1 shows the effect of diagonal
anharmonicity for all modes. For high fre-
quencies (>1000 cm™!), anharmonic ef-
fects are small; this is not surprising because
these motions correspond to covalent
stretches and angle bends, which are har-
monic within the potential energy surface
used. Medium to large diagonal anharmonic
effects are observed in the low-frequency
range. Some of the frequencies changed by
more than a factor of 4. Note that all diag-
onal anharmonic corrections are positive.

Figure 2 shows the normal coordinate
frequency for the 88 lowest frequency
modes and those including the diagonal and
off-diagonal anharmonicity corrections.
The squares correspond to exact treatment
of the diagonal anharmonicities and SCF
treatment of the off-diagonal ones; they
almost perfectly correspond to the circles,
which only include the diagonal anharmo-
nicities. Thus, the inclusion in the SCF
treatment of off-diagonal anharmonicities
has almost no effect on the calculated fre-
quency dispersion curve. This is in contrast
to small molecule studies, when off-diago-
nal elements have a strong effect on the
frequency dispersion curve (17). One rea-
son for this substantial difference is that
many modes enter into the SCF potential;
in this 88-mode calculation, for example,
each Hamiltonian includes an average over
87 other modes. Because these mixing terms
can be either positive or negative, the cor-
rection contributions tend to cancel as the
number of modes gets very large; this be-
havior is qualitatively different from that
found in small molecules.

The anharmonic terms also affect atom-
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Fig. 1. The effect of diagonal
anharmonicity on all modes.
The line represents the har-
monic normal mode frequen-
- cies as a function of the nor-
mal mode coordinate num-
ber, and the circles show the
corresponding  frequencies,
g including cubic and quartic
diagonal anharmonicities.
(Insert) The same data for the
modes with the lowest 1000
p frequencies.
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ic mean square displacement, MSD® =
(W el r2(i) [ Wio) (Fig. 3). The MSD is re-
lated to the experimental Debye-Waller
factor of the ith particle; here Vg is the
ground-state wave function. Because we
have used the united-atom approximation,
this value is shown for the heavy atoms
only, and hydrogens are not shown explic-
itly. Hydrogens cannot be detected in x-ray
data, the most frequent source of Debye-
Waller factors.

The MSD at the normal coordinate lev-
el is shown in Fig. 3A. The atoms with
sequence numbers greater than 560, corre-
sponding to H,O molecules, have higher
attenuation factors than the protein itself
because their MSDs are much larger (they
are not held together by covalent forces).

Although the diagonal anharmonic
MSD and that from the harmonic normal
coordinate analysis is similar for most atoms
(Fig. 3B), there are some substantial differ-
ences. The two largest differences, below
atom number 400, are attributable to two
particular residues, Phe?? and Phe?*. They
undergo large torsional fluctuations, corre-
sponding to very low frequency modes, and
therefore show large peaks in the MSD.

Here the correction due to diagonal anhar-
monicity is substantial.

Figure 3C shows the difference between
the SCF results with the off-diagonal terms
and the diagonal anharmonic MSDs. The
net effect of mode mixing, at the SCF level,
is relatively small on the observable MSD,
similar to the observations in Fig. 2. Notice
that the fluctuations seem to average about
zero, in agreement with our previous argu-
ment about the reason for the relatively
small importance of SCF corrections.

Figure 4 shows the absolute difference
between the diagonal anharmonic and pure-
ly harmonic MSDs, calculated as a function
of the harmonic MSD. As expected, the
more an atom moves, the more likely it is
that the diagonal anharmonic correction
will be large, as it is more likely to hit a
repulsive wall because of its large zero-point
oscillations. Again, there are two very large
contributions from Phe?? and Phe?3.

Finally, the calculation of the infrared
intensity I as a function of the mode fre-
quency v, (Fig. 5) was performed with the
formula I(v,) = v (d2 + dZ + d?). The
transition dipole moments d_, dy, and d, are
calculated by expansion in normal-mode

50.0 T T T

40.0 +
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Fig. 2. The effect of off-diag-
onal anharmonicities as SCF
results for the lowest 88
modes. The line corresponds
to the harmonic normal mode
calculation, the circles include
the diagonal terms, and the
squares are the SCF results.
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Fig. 3. Mean square displacements averaged over the ground-state wave function as a function of atom
number. (A) Harmonic normal mode calculation. (B) Difference between the anharmonic diagonal results
and those from the harmonic normal mode calculation. (C) Difference between anharmonic SCF and

anharmonic diagonal MSDs.

transition moments (®[Q, [®(M). The
results are broadened with Gaussians that
have a full width at half maximum of 2
cm™!. Again, the results of the diagonal
anharmonic computation are substantially
different from those of the harmonic nor-
mal coordinate calculation, and the SCF
approximation makes no significant addi-
tional change.

The potential fields available to date for
proteins are an important accomplishment
for the discipline and have made possible
the development of molecular dynamics,
Monte Carlo, and other theoretical studies;
however, the concern remains that these
potentials may be flawed, perhaps seriously
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Fig. 4. The absolute value of the difference be-
tween the diagonal anharmonic MSDs and the
harmonic MSDs (Fig. 3B) as a function of the har-
monic MSD (Fig. 3A).

so. We believe that the ability to carry out
theoretical quantum calculations on pro-
tein vibrations will make it possible to use
data from spectroscopy on protein systems
to refine potentials. Such refinements have
been important for small-molecule systems
(20). Although there are great obstacles to
extensive vibrational spectroscopic studies
of proteins, we believe that there are sub-
stantial possibilities for experimental devel-
opment. Vibrational absorption spectrosco-
py, Raman spectroscopy, and inelastic neu-
tron scattering relate directly to the calcu-
lations and to the theoretical capabilities
described here. Comparison of predicted
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Fig. 5. The low-frequency vibrational spectrum for
BPTI. The thin line represents the harmonic results,
the thick line includes diagonal anharmonic effects,
and the dashed line shows the SCF resullts.
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and observed spectra may well be able to
markedly improve existing force fields (21).
The quantum effects found here are sub-
stantial and suggest that it is essential to
include them outside the context of spec-
troscopy. This implies major effects on De-
bye-Waller factors and other properties of
interest. The effects of zero-point energy,
for example, on water adhesion on proteins
merit attention in a quantum framework.
Finally, in addition to their biological
importance, proteins are glassy-like materi-
als, and such materials are known to have
unusual low-temperature properties. It is
hoped that quantum analyses such as that
presented here will be useful for treating
these challenging systems. The advantage
of studying proteins as models for glasses is
their known structure, which makes it pos-
sible to pursue atomically detailed studies.
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Pressure-Tuned Fermi Resonance in Ice VII
K. Aoki,* H. Yamawaki, M. Sakashita

Fermi resonance was observed between the OH stretch and the overtone of the OH
bending modes of HDO molecules contaminated in phase VIl of D, O ice over the pressure
range from 17 to 30 gigapascals. An anharmonic coupling constant, which is related to
the potential energy surface on which hydrogen-bonded protons oscillate, was found to
range around 50 wave numbers through the resonant pressure range. lts experimentally
obtained magnitude and pressure-insensitive behavior will be useful for theoretical stud-
ies of the potential energy surface and hence of the nature of hydrogen bonding in ice.

Lee isa prototypical hydrogen-bonded sys-
tem, and its structural and physical proper-
ties have been a major subject of high-
pressure research. More than 10 crystalline
phases have been found in a pressure range
up to 50 GPa and in a temperature range
down to 77 K (1). Of the known phases, ice
VII and VIII are particularly important for
understanding the nature of the hydrogen
bond. They have very closely related struc-
tures (2—4) and are stable from 2 GPa to at
least 50 GPa (5). This wide range of pres-
sure stability allows intermolecular distanc-
es to vary widely without any fundamental
change in the molecular arrangement. Ra-
man scattering (5—7), infrared absorption
(8), and x-ray diffraction measurements (9,
10) have been used to investigate the high-
pressure vibrational and structural behavior
of these phases.

Recently, fundamental aspects of the na-
ture of bonding in ice VII and VIII were
revealed by high-pressure experiments. The
pressure dependence of the hydrogen bond
length in ice VIII was directly measured by
neutron powder diffraction (1), and the
elastic property of ice VII was precisely in-
vestigated by single crystal Brillouin spec-
troscopy (12). From these experimental
results, the pressure dependence of the
interatomic potential and the intermolec-
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ular bond strength were derived. One in-
teresting feature previously unseen in ice
is resonance between the vibrational
states associated with the hydrogen bond-
ing. Such a vibrational resonance is
known as Fermi resonance and is often
observed in complex molecules.

Fermi resonance occurs when two vibra-
tional modes having the same symmetry
and comparable vibrational frequencies are
coupled by an anharmonic term in the in-
teratomic potential. The coupling of these
two vibrational modes produces two sta-
tionary resonant states; the frequency split-
ting and the amplitude distribution be-
tween them are described as a function of
both an anharmonic coupling constant and
the frequency difference between the un-
coupled initial states. Such a resonant effect
was first observed in the Raman spectra of
CO, in 1929 (13) and a quantum mechan-
ical explanation was immediately given by
Fermi (14). In solid CO,, the symmetric
stretch and the overtone of the bending
modes are coupled to form two stationary
resonant states separated by 100 cm™!. The
corresponding vibrational modes of H,O
are far from resonance: In the infrared ab-
sorption spectra of ice VII at 2 GPa, for
instance, the peaks from the stretch and the
overtone of the bending modes are at about
3400 and 2900 cm ™!, respectively. Howev-
er, the OH stretching frequency rapidly ap-
proaches the overtone frequency with in-
creasing pressure (8). The decrease rate,
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about —20 cm ™! per gigapascal, leads to an
expectation that the resonance will be in-
duced in ice VII, as it is in solid CO,, at a
pressure of several tens of gigapascals. Here
we describe infrared absorption measure-
ments of ice VII up to 45 GPa at room
temperature, which demonstrate the pres-
ence of pressure-tuned Fermi resonance.

Infrared spectra of HDO molecules con-
taminated in 99.996% D,0O (Aldrich) were
measured in a cylindrical diamond-anvil cell
30 mm in diameter and 20 mm thick, with
an optical opening of 60° for both entrance
and exit sides (15). The sample was sealed in
a hole about 80 pm in diameter prepared in
a 40-pm-thick metal gasket of Inconel
X-750 and squeezed between opposed anvils.
The pressure was determined from the shift
of the fluorescence lines from ruby chips
embedded in the sample (16). The pressure
difference inside the sample was relatively
small; at an average pressure of 36.4 GPa, for
example, the measured pressures ranged
from 36.3 to 36.5 GPa. Light transmitted
through the unmasked sample area, a square
typically 60 pwm by 60 pm, was analyzed and
recorded with a microscope-Fourier trans-
form infrared spectrometer. The spectral res-
olution was 1.0 cm™ L.

The absorption peaks of the stretching
and bending vibrations in the HDO mole-
cule were measured at pressures from 2 to 45
GPa. Over this pressure range, ice VII is
known to exist stably. For ice VII, prepared
just above the transition pressure of 2 GPa,
a strong stretching peak was observed at
about 3400 cm ™! on the tail of the saturat-
ed OD stretching peaks, whereas an absorp-
tion peak associated with the overtone of
the bending vibration was not observed in
the expected frequency region around 3000
cm ™ !. The stretching peak rapidly shifted
to a lower frequency with increasing pres-
sure, reaching 3100 ecm™! at 15 GPa. The
overtone peak of the bending mode was
then recognized as a shoulder located at
about 2900 cm™!'. When the pressure in-
creased further, the two peaks approached
closely enough to begin to interfere and
showed anomalous changes in frequencies
and peak intensities.

Figure 1 shows absorption spectra of the
coupled states of the stretch and bending
modes in the pressure range from 18 to 27
GPa. The intensities of the two peaks
change in the opposite directions as pressure
increases. The shoulder peak, initially locat-
ed at 2900 cm ™!, grows gradually, while the
height of the large peak at 3100 cm™! de-
creases. Their peak heights are comparable
at 22.9 GPa and then reverse at higher pres-
sures. Finally, the original large peak is de-
pressed to a shoulder at 26.7 GPa. These two
peaks are associated with the resonant states
formed by the mixing of the stretch and the
overtone of the bending modes. The anom-





