
TH2-like cells. These results concern only 
the effector phase of the disease and do not 
bear on the role of Tl_,l-T1_,2 cells in earlier 
events. However, they are in accord with the 
observation that artificial exoression bv islet 
cells of IL-10, an immunosuppressive lym- 
~hok ine  with documented effects on T,-,1 
cells, actually promotes insulitis and diabetes 
rather than inhibits them (14). Some of the 
major challenges remaining are to prove the 
role of TFI1 cells in spontaneous diabetes in 
rodents and humans, to understand the role 
of accessory cells or molecules in regulating 
the T,ll-T,12 balance, and to find the least 
interventional means to divert T,l cells to a . L 

TH2 phenotype in ongoing disease. 
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Requirement for Phospha tidylinosi to1 Transfer 
Protein in Epidermal Growth Factor Signaling 
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Simon Prosser, Emer Cunningham, Shamshad Cockcroft, 
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Stimulation of phosphatidylinositol-4,5-bisphosphate (PIP,) hydrolysis is a widespread 
mechanism for receptor-mediated signaling in eukaryotes. Cytosolic phosphatidylinositol 
transfer protein (PITP) is necessary for guanosine triphosphate (GTP)-dependent hydro- 
lysis of PIP, by phospholipase C-@ (PLC-P), but the role of PITP is unclear. Stimulation 
of phospholipase C-y (PLC-7) in A431 human epidermoid carcinoma cells treated with 
epidermal growth factor (EGF) required PITP. Stimulation of PI-4 kinase in cells treated 
with EGF also required PITP. Coprecipitation studies revealed an EGF-dependent as- 
sociation of PITP with the EGF receptor, with PI-4 kinase, and with PLC-y. 

T h e  regulation of PLC activity by tyrosine ways (1) .  Cytosolic PLC-y associates with 
kinases occurs by a signaling mechanism specific phosphotyrosine residues on acti- 
distinct from that of GTP-dependent path- vated receptor tyrosine kinases at the plas- 

ma membrane, including phosphotyrosine 
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ing. University College London. University Street, London 
in,p, r c , , , ,,, events are insufficient to stimulate phos- 
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phoinositidase activity in intact cell mem- 
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Fig. 2. Regeneration of signal transduction in permeabilized A431 cells. Restoration of the stimulation of 
PLC activity (A) and PI phosphorylation (6) by EGF was measured in cytosol-depleted A431 cells. A431 
cells were permeabilized with SLO (0.6 IU/ml) for 20 rnin and incubated with or without 100 nM EGF, PITP 
(50 pg/ml), and PLC-y1 (2.3 pg/ml) as indicated (28). Samples were incubated for 15 rnin (A) or 2 rnin (B) 
and analyzed for inositol phosphates or polyphosphoinositides essentially as described in Fig. 1. After 
permeabilization of cells and their treatment with EGF, reconstituted PLC activity (C) and PI phosphoryl- 
ation (D) were measured in the presence of different concentrations of exogenous PITP. Exogenous 
PLC-71 (2.3 pg/ml) was included in PLC assays only. 

Fig. 1. Loss of EGF receptor signal transduction in 
A431 cells after permeabilization. (A) After perme- 
abilization for 0.5 (solid circles), 5 (solid squares), 
10 (open squares), and 20 (open circles) rnin (24), 
the time course of EGF stimulation of PI phos- 
phorylation was measured with endogenous sub- 
strate (25). (6) After treatment of cells with SLO for 
the times indicated, the time courses of EGF-de- 
pendent (solid squares) and unstimulated (open 
squares) inositol phosphate production were 
measured with the use of endogenous substrate 
(26). (C) Time course of the effusion of PLC-7 and 
PITP into the extracellular medium after permeabi- 
lization was analyzed by immunoblotting (27). 

studied the EGF-dependent generation of 
inositol polyphosphates. Streptolysin 0 
(SLO) was used to permeabilize the plasma 
membrane of A43 1 human epidermoid car- 
cinoma cells, thereby allowing cytosolic 
components to diffuse out of the cell. Treat- 
ment of cells with SLO caused a progressive 
decrease in the magnitude of the EGF-in- 
duced phosphorylation of PI, whereas the 
time required for maximal stimulation (ap- 
proximately 2 min) did not appear to 
change (Fig. 1A). Depletion of cytosol by 
permeabilization with SLO was time-de- 
  en dent: in cells stimulated with EGF for 2 

and in combination. We measured PLC 
activity after treating cytosol-depleted 
cells with various combinations of EGF, 
PITP, and PLC-y in the presence of aden- 
osine triphosphate (ATP) (Fig. 2A). 
Treatment of permeabilized cells with 
EGF and PLC-y gave little increase in the 
production of IPS. Because PLC-y associ- 
ates with the EGF receptor and is tyrosine- 
phosphorylated in response to EGF under 
these conditions (1 7), regulation of PLC-y 
alone appears to be insufficient for signal- 
ing by EGF. Addition of PITP to this 
system restored EGF-mediated activation 
of PLC-y. Therefore, signaling through 
inositol lipid hydrolysis by both PLC-y 
and PLC-P (1 6) pathways requires PITP as 
an essential component. 

PITP carries PI, but the preferred sub- 
strate for PLC is phosphorylated PI (PIP 
and PIP2). This fact and the requirement 
for PITP in the reconstitution of EGF- 
dependent PI phosphorylation and hydro- 
lysis indicate that the presence of PI ki- 
nases may also be necessary. The type I1 
PI-4 kinase regulated by EGF in A431 
cells is membrane-associated and would 
therefore not be lost from permeabilized 
cells (7, 8). Reagents for the characteriza- 

not yet clear which enzymatic steps be- 
sides PIP2 hydrolysis, if any, are regulated 
by tyrosine kinases. The PI-4 kinase and 
PI-4-phosphate-5 kinase (PIP-5 kinase) 
activities, which convert PI to PIP2 (the 
substrate for PLC-y), are also stimulated 
in cells treated with EGF (7-10). Because 
PITP increases the rate of GTP-dependent 
PIP2 hydrolysis by PLC-P (I 1 ), and PITP 
cannot transport PI phosphates (I Z), it is 
possible that intracellular PI transport by 
PITP from its site of biosynthesis in the 
endoplasmic reticulum to the plasma 
membrane is also regulated. Thus PI me- 
tabolism may be compartmentalized in the 
cell, and phosphoinositides in the plasma 
membrane may not be freely available sub- 
strates for PI kinases or for PLC in intact 
cells (5, 1 3,  14). Such complexity can be 
studied in intact membranes, but would 
not be so evident in solubilized prepara- 
tions with exogenous substrates. 

To investigate whether PITP (1 5) is in- 
volved in signaling through PLC-y, we 

rnin after increasing times of permeabiliza- 
tion, a decline in the amount of lipid hy- 
drolysis was seen (Fig. 1B) that, although 
certainly not identical, occurred at a similar 
rate to that of the loss of PLC-y and PITP 
from the cells (Fig. 1C). The rate at which 
PLC-y and PITP appeared in the culture 
medium was consistent with their release by 
free diffusion ( 16). . , 

The addition of a rat brain cytosol 
preparation to the culture medium of per- 
meabilized cells restored EGF-dependent 
production of inositol phosphates (IPS) 
(1 7). We therefore investigated the effects 
of replacing PITP and PLC-y individually 
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tion of PIP-5 kinase activities are not 
available. The EGF-dependent isozyme in 
A431 cells has not been identified, but 
EGF-dependent PIP-5 kinase activity has 
been shown to be present in a plasma 
membrane fraction prepared from A43 1 
cells (8). We measured the dependence of 
endogenous PI-4 kinase activity on exog- 
enously added EGF, PITP, and PLC-y 
(Fig. 2B). Although each individual com- 
ponent was ineffective, the addition of 
EGF and PITP synergistically increased 
the amount of phosphorylated PI (PIP and 
PIP2). When purified PLC-y was also add- 
ed, this stimulation was barely detected, 
presumably because PIP and PIP, generat- 
ed by PI-4 kinase and PIP-5 kinase activity 
were hydrolyzed by the phospholipase 
(18). PITP alone was unable to increase 
the amount of phosphorylated PI. There- 
fore, PI-4 kinase activity appears to be 
regulated by EGF (7-lo), and this regula- 
tion requires the presence of PITP. 

A widely accepted role for PITP is to 
freely exchange its bound PI and phos- 
phatidylcholine (PCh) with PI or PCh in 
different subcellular membranes ( 15, 19). 
However the dose response of PLC-y ac- 
tivity to PITP is similar to that of PI 
phosbhorylation (Fig. 2, C and D), which 
is consistent with another model in which 
PITP, PI-4 kinase, and PLC-y are comple- 
mentary parts of an integral EGF receptor 
signaling complex (20). This latter model 
also explains, at least in part, the reported 
compartmentation of PI metabolism into 
agonist-sensitive and -insensitive pools (5, 
14). Although reagents are not yet avail- 
able to fully test this model, we investi- 
gated whether PITP could be coprecipi- 
tated with relevant signaling molecules. In 
unstimulated cells, PITP was only weakly 
detected in immunoprecipitates prepared 
with antibodies to the EGF receptor, 
PLC-y or PI-4 kinase (Fig. 3), as compared 
with the amount detected in immunopre- 
cipitates from cells treated with EGF for 5 
min. Longer treatment of cells with EGF - 
(up to 30 min) caused no further increase 
in association of these proteins (1 7). Sim- 
ilar experiments showed that both PITP 
and the EGF receptor could be coprecipi- 
tated with antibodies to PLC-y after EGF 
stimulation of intact A431 cells (1 7). EGF 
treatment of A43 1 cells also causes a r a ~ i d  
recruitment of PI-4 kinase to activated 
EGF receptors (1 0). 

Our results demonstrate that PITP as- 

Molecular weight 

4-fn-P 
30 I- 

EGF - + + + 
-]I- 

IP R1 4C5G PLC-1 

Fig. 3. EGF-dependent formation of intermolecu- 
lar complexes with PITP. The association of PlTP 
with EGF-dependent signaling enzymes was 
studied in serum-starved, intact A431 cells. PlTP 
was detected by immunoblotting after immuno- 
precipitation (29) of cellular proteins with antibod- 
ies to the EGF receptor (EGF-R1) (30), to PLC-y, 
or to PI-4 kinase (4C5G) (31). 

two signaling pathways. Because PITP re- 
stored PI phosphorylation, PITP may 
present PI directly to PI-4 kinase (20). 
Thus, interaction of PITP with PI-4 kinase 
may be a general phenomenon and may 
also occur in the process of calcium-acti- 
vated noradrenalin secretion in PC12 rat 
pheochromocytoma cells, for which PITP 
is also required (21 ). 
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