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Ribosomal RNA Precursor Processing by a 
Eukaryotic U3 Small Nucleolar RNA-Like 

Molecule in an Archaeon 
Simon Potter, Peter Durovic, Patrick P. Dennis* 

An RNA-containing endonuclease that catalyzes the excision and maturation of the 16s 
ribosomal RNA (rRNA) from the rRNA primary transcript (pre-rRNA) in the hyperthermo- 
philic archaeon Sulfolobus acidocaldarius has been characterized. The ribonucleoprotein 
was inactivated by micrococcal nuclease treatment and inactivation was reversed by 
reconstitution with bulk RNA. A 159-nucleotide RNA with sequence and structural sim- 
ilarity to U3 small nucleolar RNAs of eukaryotes copurified with the endonuclease activity. 
Oligonucleotide-targeted ribonuclease H inactivation of the US-like RNA component also 
abolished processing activity. A motif within the U3 homolog is complementary to the 
region around the three cleavage sites in the pre-RNA substrate. Thus, U3-mediated 
processing of pre-rRNA is not specific to eukaryotes; its origin predates the divergence 
of archaea and eukaryotes. 

A t  least two endonuclease activities partic- 
ipate in the processing of the primary tran- 
script from the single copy 163-235 rRNA 
oneron in S. acidocaldnrius (1). The first of 
these endonucleases is the well-character- 
ized, helix-processing enzyme unique to all 
archaea (2 ,  3). This endonuclease excises 
introlls from intron-containing tRNA and " 

rRNA gene transcripts and, in most species, 
excises pre-163 and 23s rRNAs from the 
primary rRNA transcript (1-4). The en- 
zyme has a rigorously defined substrate spec- 
ificity; it acts on two three-base bulges, lo- 
cated on opposite strands within an extend- 
ed helix, that are separated by 4 base pairs 
(bp). With respect to rRNA processing, the 
enzyme is analogous (but not homologous) 
to the helix-specific ribonuclease (RNase) 
I11 of bacteria (5). In S. acidocaldarius, this 
activitv excises pre-23s but not pre-l6S 

RNA from the primary rRNA transcript (1 ). 
Although the 163 RNA sequence is sur- 

rounded by a long inverted repeat in the 
primary transcript, it is unlikely that the 
putative helix is used or required for exci- 
sion or maturation events in the 5' external 
transcribed spacer (ETS). Instead, the 5 '  
ETS is cleaved at three positions by the 
second endonuclease activity, which we 
now show resembles the U3-containing ri- 
bonucleoprotein (RNP) particles responsi- 
ble for processing of pre-rRNA in the nu- 
cleolus of eukaryotic cells (6). The first two 
cleavages occur -99 and 31 nucleotides 
(nt)  upstream of the 16s RNA sequence, 
and the third occurs at the 5 '  ETS-163 
RNA junction in order to produce the 5' 
end of mature 163 RNA. We have shown 
previously that a cell-free extract of S. aci- 
docaldarius will cleave a svnthetic RNA sub- 
strate that contains the 5'  ETS and the first 

Department of Bochemstry and Molecular B~oogy and 
CanadIan nstltute for Advanced Research, Unverslty of 72 nt of 16' RNA at 'lose to 
Br~t~sh Columb~a, Vancouver, Br~t~sh Coumbla, Canada the expected three positions (1 ). This ob- 
V6T 123. servation indicates that 5' ETS processing 
*To whom correspondence should be addressed. does not require formation of the 16s RNA 

processing helix, and that maturation at the 
5' end of 163 RNA requires no more than 
72 nt of 16s RNA sequence and does not 
require concomitant small ribosomal sub- 
unit assembly. The endonuclease activity 
was sensitive to Riqase A digestion, indi- 
cating that it contained an RNA compo- 
nent essential for activity. 

Primer extensio~l analysis was used to 
position precisely the 5' ends of intermedi- 
ates and products resulting from in vitro 
cleavage of an SP6 RNA polymerase-tran- 
scribed substrate RNA by an activity puri- 
fied from cell-free extract (7)  (Fig. 1). The 
primer was complementary to positions 57 
to 35 of 163 rRNA. The observed products 
indicated that major cleavages occur at po- 
sitions -99 (site l )  and -31 (site 2) of the 
5' ETS and at position + 1 (site 4) at the 5' 
ETS-16s RNA junction. These intermedi- 
ates and the mature 16s RNA product were 
virtually identical to those observed in vivo 
(1,  8). Additional minor extension prod- 
ucts with 5' ends near sites 1, 2, and 4 were 
observed; these could represent alternative 
positions for endonucleolytic processing or, 
in some instances, nuclease trimming at the 
5' end of the intermediates or products. 

We also directly visualized the accumu- 
lation of product fragments that resulted 
from the cleavage of 32P-labeled substrate 
RNA. Three of the four products accumu- 
lated in a time-dependent manner (Fig. 2, 
A and B). The fourth product was too short 
to visualize on the electrophoresis gel. 

RNase A sensitivity of processing activ- 
ity in crude cell extracts (1)  was supported 
bl- incubating partially purified processing 
activity with micrococcal nuclease at 37OC 
before increasing the temperature to 75OC 
for 15 min and then adding the substrate 
RNA (9). No specific processing was evi- 
dent when the partially purified activity was 
treated with the nuclease (Fig. 2C, lanes 2 
and 3). The inactivated processing activity 
was then reactivated by reconstitution with 
bulk S. ncidocnldarius RNA (3  to 15 kg) for 
15 min at 75"C, after which substrate RNA 
was added and incubation was contin~~ed 
for a further 15 min at 75'C (Fig. 2C, lanes 
4 to 8). Reactivation was partial with the 
use of 6 kg of RNA and essentially corn- 
plete with >6 kg of RNA. Bulk RNA from 
several other archaeal or bacterial species 
was illeffective in heterologous reconstitu- 
tion (7). The reconstituted activity was it- 
self sensitive to redigestion by micrococcal 
nuclease. The reconstituted mixture was 
transferred back to 37°C and a second dose 
of micrococcal nuclease (100 ng or 1 kg) 
was added, before returning the sample 
again to 75°C and adding substrate RNA; 
no processing was evident (Fig. 2C, lanes 9 
to 12). 

The presence of an RNA component in 
the purified processing activity was detected 
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by reverse transcription and polymerase 
chain reaction (PCR) analysis (10). This 
procedure yielded a product band o f  148 bp. 
The product was cloned, sequenced, and 

Site t site2 Ske 4 In vitm A p-er -98 substlate 
+ / RNA 

5'm eu rn OH 
Veclu and IlmLlng SETS 165 rRNA Veam 

21 nt 144 nl 72nl 15nl 
_I 

Extension 
products 

s 

Site 2- 

C 
C 

Sie 4- - - - -, Go - A.l.11 

(5' 16s) U u 

Fig. 1. Localization of in vitro cleavage sites within 
the 5' ETS. (A) Schematic representation of the 
synthetic in vitro-transcribed substrate RNA, indi- 
cating the three major sites of cleavage at posi- 
tions -99, -31, and + 1. The extension products 
generated with an oligonucleotide primer comple- 
mentary to positions 57 to 35 of 16s rRNA as well 
as in vitro processing intermediates are also 
shown. (B) Nonradioactive substrate RNA was 
partially processed for 15 s to 5 min (7). The re- 
sulting intermediates were subjected to primer ex- 
tension analysis and the extension products were 
detected by electrophoresis on a denaturing poly- 
acrylamide gel and autoradiography. Lanes: P, 
control in which the primer, in the absence of the 
processing activity or substrate RNA, was sub- 
jected to extension analysis; P. A,, control in which 
the processing activity, in the absence of added 
substrate RNA, was subjected to extension anal- 
ysis; and sub. RNA, control in which the in vitro- 
transcribed substrate RNA, in the absence of pro- 
cessing activity, was subjected to extension anal- 
ysis. The next four lanes represent extension anal- 
ysis on RNA intermediates that accumulate after 
exposure to processing activity for 15 s, 30 s, 1 
min, or 5 min, respectively. The band at the top of 
the gel (labeled PT) is the extension product de- 
rived from full-length substrate RNA. All primer ex- 
tensions were performed in the presence of 2.5 kg 
of bulk yeast RNA as carrier. The G, A, T, and C 
lanes are a dideoxy sequence ladder generated by 
the 5'-phosphorylated oligonucleotide primer and 
plasmid pPD1105 as template. The DNA(+) strand 
sequence is indicated on the right with the major 
(@) and minor (0) extension stops indicated. 

used to probe genomic DNA. A 1.2-kb 
Hind 111-Eco RV genomic fragment hybrid- 
ized to the   robe and. bv nucleotide se- , , 
quencing, was shown to encode the RNA 
that had been amplified by PCR. T o  ensure 
that the PCR product was an authentic 
component of the processing activity, we 
performed Northern (RNA) hybridization 
wi th material obtained by phenol extrac- 
t ion of the processing activity at various 
steps in a procedure that resulted in a 200- 
fold purification. Both the genomic probe 
and the PCR product probe hybridized to 
an RNA of -150 nt that copurified wi th 
the processing activity (Fig. 3). The nucle- 
otide sequences of the PCR and genomic 
clones were determined and the position of 
the authentic 5' end of the RNA was lo- 

calized by primer extension analysis. The 
PCR product was found to lack 11 nt from 
the 5' end of the in vivo RNA from which 
it was derived. 

The 159-nt RNA exhibits sequence and 
potential structural similarity to U3, the 
most abundant and well-characterized small 
nucleolar RNA (snoRNA) of eukaryotes 
(6) (Fig. 4A). In Saccharomyces cerewisiae, 
depletion of U 3  inhibits multiple events 
required for 18s RNA maturation and the 
accumulation of small ribosomal subunits 
(1 I ) .  A U3-containing complex appears to 
bind 230 nt upstream of the ETS-183 RNA 
junction and initiates three cleavage 
events: The first occurs 89 nt upstream of 
the ETS-18s RNA junction, the second at 
the ETS-18s RNA junction to generate 

Fig. 2. Detection of partially A In viva Sie 1 Sie 2 Sie 4 
purified processing activity promoter -99 -31 +I 
and its sensitivitv to micro- I n  vitm RNA 4 4 4 4 

1 1 1  

coccal nuclease digestion. substrate ~'PPP rn - OH 
(A) Schematic representa- 

Vector and flanking 5' ETS 16s rRNA Vector 
tion of the in vitro-tran- 21 nt 144 nt 72 nt 15 nt 
scribed substrate RNA and 
the four-limit cleavage prod- -00- 

5' Site 1 Site 2 Site 4 3' 
ucts. (6) Substrate RNA la- 
beled with [c~-~~P]CTP was 
incubated for 0, 1, 2, 4, 8, 
16, 32, or 64 min with puri- 
fied processing activity at 
75°C (1, 7). Products were 
separated on a denaturing 
8% polyacrylamide gel and 
detected by autoradiogra- 
phy. (C) Processing activity 
was inactivated by treat- 
ment with micrococcal nu- 
clease (100 ng per assay) in 
the presence of Ca2+ at 
37°C for 15 min and subse- 

B 
Time (min) 

of incubation 
at 75% 

- ~ + m ' D % a  
Substrate 

-31 -Site 4 to 3' end 
(mature 5' of 16s) 

-Site 4 to 3' end 
(mature 5' of 16s) 

-Sie 1 to site 2 
-5' end to site 1 

quently reconstituted at . . 
q S i t e  1 to site 2 

75°C bv addition of bulk - ~ 

RNA. After reconstitution -- -5' end to site 1 
for 15 min at 75"C, 32P-la- -site 2 to site 4 
beled substrate was added 
and incubation continued 
for a further 15 min. Products were separated on a denaturing 8% polyacrylamide gel and detected by 
autoradiography. Lanes: 1, substrate RNA; 2 and 3, activity treated with micrococcal nuclease and 
assayed without reconstitution; 4 to 8, activity treated with micrococcal nuclease, reconstituted with 3,6, 
9, 12, or 15 kg  of bulk RNA, and assayed; 9 and 10, same as lanes 4 and 7, but retreated after 
reconstitution with 100 ng of micrococcal nuclease for 15 min at 37°C before returning again to 75OC for 
the addition of substrate; 11 and 12, same as lane 7 but retreated after reconstitution with 1 kg of 
micrococcal nuclease for 15 or 30 min, respectively, at 37°C. 

Fig. 3. Copurification of a small RNA with 5' ETS-processing activity. The 1 2 3 4 5 6  
activity responsible for cleavage of the 5' ETS-containing substrate RNA 

147- 
was purified from crude cell lysates. At each step of purification, RNA was 
prepared by phenol extraction and subjected to Northern analysis with 
the genomic clone that encodes the U3-like RNA as a probe. The lanes 
represent various steps in a procedure that results in a 200-fold purifica- 
tion: 1, crude extract; 2, 35% saturated ammonium sulfate fraction; 3 and 4, fractions 10 and 11 from 
Superose 6 (Pharmacia) chromatography; 5, MonoQ ion exchange chromatography (Pharmacia); 6, 
Hi-trap heparin chromatography (Pharmacia). Details of the purification procedure and composition of the 
processing activity will be described in a subsequent publication (24). The RNA extractions at the different 
stages of purification were normalized to a constant amount of a major 30-kD protein that copurifies with 
the processing activity. On an immunoblot, this protein cross-reacted with human antibodies to fibrillarin. 
The anti-fibrillarin antibodies coprecipitate the same protein and RNA components that copurify with the 
processing activity (21). The position of a 147-nt RNA size standard is indicated on the left. 
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the mature 5' end of 18s RNA, and the 
third within the first internal transcribed 
spacer (ITS1) close to the junction with 
5.8s RNA (1 1, 12). Similar U3-dependent 
cleavages have been observed in the Xeno- 
pus and mammalian pre-rRNA processing 
pathways (13, 14). 

The U3 snoRNAs from eukaryotes ex- 
hibit a common secondary structure, con- 
tain five separate sequence elements (boxes 
A, C', B, C, and D) that are highly con- 
served, and, together with the protein fibril- 

larin, constitute two of the components of a 
larger RNP complex (6). Box A is the most 
highly conserved region of U3. In yeast and 
mammals, nucleotides within or close to 
box A are implicated in the binding of U3 
to the ETS region of pre-rRNA (12, 15). 
Structural analysis of human and Xenopus 
U3 indicates that the box B sequence is 
single-stranded and therefore available for a 
potential interaction with substrate RNA 
(1 6, 17). However, no clearly conserved 
complementarity between box B and se- 

quences at or near U3-dependent cleavage 
sites has been identified. Box C is thought 
to participate in the association of the RNA 
with fibrillarin ( 15). 

Although shorter than most eukaryotic 
U3 RNAs, the S. acidocaIdarius U3-like 
RNA retains the conserved box A, C', B, 
C, and D sequences at the appropriate po- 
sitions and can be readily folded into a 
U3-like secondary structure (Fig. 4A). 
Alignment of the five box sequences indi- 
cates that, over these 62 nt, the S. acidocal- 
darius RNA is 56, 50, and 48% identical to 
the mouse, Xenopus, and yeast sequences, 
respectively (Fig. 5). In the same compari- 
son, the yeast sequence is 71 and 63% 
identical to those of mouse and Xenopus, 
respectively. We conclude that the RNA 
we have identified is the archaeal homolog 
of eukaryotic U3 snoRNA. 

Processine of the 5' ETS substrate occurs 

U3-like RNA 
U U 

- 

G - C  -144 +lo 
5' ETS sequence R - U  pppGC-GGUUGR..  . 

C -G 
A - u  G - C  Jg (B'endof 

C C -125 
I G - C  16s rRNA) 

A C - t o o  A A-Un 
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U .G 
U * G  

C IIIII I l l  G - C A  
G-CGGGAGUACUGU UG - I z 5  
P-I; GR -116 

cz 

in vitro in the absence of the second half of 
the long inverted repeat sequence that sur- 
rounds 16s rRNA in the primary transcript. 
This result indicates that the potential 16s 
RNA processing helix that is a universal 
feature in virtually all bacterial and archaeal 
rRNA oDerons mav not be reauired for 5' 

I C - G  
A - U  
G - C  
r- I ;  

ETS i i  S. acidoca'hrius. We 
therefore reexamined the S. acidocaIdarius 5 ' 
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Site 2- 
Fig. 4. Sequence and secondary structure of and cleavage site complementarity between U3-like RNA 
and 5' ETS RNA. (A) The RNA component of the processing activity is 159 nt in length and is folded into 
a eukaryotic U3-like secondary structure (6.23). The ~ 0 n s e ~ e d  sequence motifs are box A (positions 12 
to 25), box C' (44 to 53), box B (65 to 81), box C (1 05 to 11 4), and box D (1 48 to 156). (B) The 5' ETS is 
folded into the predicted cloverleaf secondary structure with the use of the program RNA fold (25). 
Processing occurs at sites 1,2, and 4 near positions -99, -31, and + 1, respectively. (C) The core of box 
B in the US-like RNA exhibits complementarity to the sequences surrounding processing sites 1, 2, and 
4 in the 5' ETS. 

Fig. 6. Oligonucleotide-targeted RNase H inacti- 
vation of the processing activity. The substrate, 
processing intermediates, and products of the 
processing reaction were detected with the prim- 
er extension assay described in Fig. 1. Extension 
products were separated on a denaturing 8% 
polyacrylamide gel and analyzed by autoradiogra- 
phy. Portions of the processing reaction mixture 
were removed for analysis after 15 s, 1 min, and 
2.5 min. The first two lanes correspond to the in 
vitro transcript (Trans.) and the zero time control 
(0) in the normal processing reaction. The oligo- 
nucleotides (Oligo) used for targeting RNase H 
digestion were box B oSP7 (B), box A oSP2 (A), 
and the nonspecific oSP5 (N). 

Fig. 5. Alignment of the Box A BoxC' Box B Box C Box D 
conserved U3 RNA ~ o x A ,  nu,: GGflUCflUUUCUtlUfl..  GAGGRCGRGG. .UGAGCGUGflflGCCGGCU. .UUGRUGAUCG. .RGUCUGflGUGG 
C', B, C, and D motifs, Xen: GGRUCRUUUCUAUR..GRGGRAGRGG..UGRGCGUGflRGUGRGCU..UUGAUGRACG..flGGCUGRGUGG 
~h~ five motifs Sce: GGRUCRUUUCURUR..GUUGRUGflGG..RGRGUGRGflRflCCGflAR..RUGAUCUUGR..AGUCUGRCflflG 

C o n  GGRUCRUUUCURUR..GagGA-GRGG. FuGRAgscggcu. .uUGAUgaucg. .AGuCTGAgugG 
from three eukaryotic U3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
RNAs (mouse, Mus; Xe- sac : GGAGCUUGUCURRC. . UCRGRUURGG. . CGCGCCUGRRUCCGGRR. . UUAGRGRCCC . . GRCCURRGURC 

nopus, Xen; S. cerevisiae, 
Sce) are aligned with the corresponding motifs in the U3-like RNA from S. acidocaldarius (Sac). The S. 
acidocaldarius box D sequence is extended by 2 nt over that shown in Fig. 4 in order to conform to the 
length of the eukaryotic box D sequences. A consensus sequence (Con) has been derived; uppercase 
nucleotides are conserved in all three eukaryotic RNAs; lowercase nucleotides are conserved in two of 
the three RNAs. Bold dots (0) indicate identities between the U3-like RNA of S. acidocaldarius and the 
consensussequence. 
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ETS for an alternative secondary structure. 
The 144-nt 5' ETS together with the first 6 
nt of 16s rRNA can be folded into a clo- 
verleaf structure (Fig. 4B), in which sites 1, 
2, and 4 are in close proximity. The major 
cleavages within sites 1 and 2 occur 5' to the 
G(-99) and A(-31) residues that form a 
noncanonical base pair near the base of the 
downward helix. Maturation of 16s rRNA 
at position +1 occurs in a short unpaired 
region between the rightward and upward 
helices. Examination of the U3-like RNA 
sequence indicates that the core of box B 
exhibits substantial complementarity to the 
nucleotide sequence around processing sites 
1, 2, and 4 in the substrate RNA (Fig. 4C). 
It is not known whether this complementa- 
rity is important for site recognition or 
whether it plays a role in the cleavage reac- 
tion. In eukaryotes, the potential for 
complementarity between U3 box B and 
cleavage site sequences is either absent or 
much less significant. 

In yeast, processing at the 5' ETS-18s 
RNA junction requires several snoRNAs, 
including U3 and U14, as well as fibrillarin 
and other proteins (6, 18). To confirm the 
importance of the S. acidocaldanus U3-like 
RNA in 5' ETS processing, we subjected 
the U3-like RNA to oligonucleotide-target- 
ed RNase H digestion (19). The two target- 
ing oligonucleotides were complementary 
to the U3-like RNA between positions 85 
to 69 and 32 to 12 and overlap, respective- 
ly, the highly conserved box B and box A 
regions. The presence of either the box B or 
box A oligonucleotides or a nonspecific 
oligonucleotide had no effect on the normal 

Oligo:- - B B  B A A A N N N  
RNaseH:- + - + + - + - + 

Uslike- 
RNA 

Fig. 7. Oligonucleotide-targeted RNase H abla- 
tion of the U3-like RNA component of the pro- 
cessing activity. Processing activity was incubat- 
ed in the absence or presence of specific or non- 
specific oligonucleotides and then digested with 
RNase H (20). The RNA was recovered from the 
control and treated samples, and subjected to 
Northern analysis with the U3-like cDNA fragment 
from plasmid pPD3 156 as probe. The specific 
oligonucleotides were box B oSP7 (B) and box A 
oSP2 (A) and the nonspecific oligonucleotide was 
oSP5 (N). 

processing reaction (Fig. 6). Similarly, di- 
gestion with RNase H in the presence of 
the nonspecific oligonucleotide had essen- 
tially no effect on processing activity. In 
contrast, digestion with RNase H in the 
presence of the box B oligonucleotide 
markedly reduced the rate of consumption 
of the substrate and accumulation of inter- 
mediates and product, and digestion in the 
presence of the box A oligonucleotide ap- 
peared to inactivate processing activity 
completely. 

To  show that the RNase H-targeted di- 
gestion specifically ablates the U3-like 
RNA component of the processing activity, 
we performed Northern analysis (Fig. 7). 
Processing activity was incubated with the 
specific box B or box A oligonucleotides, or 
the nonspecific oligonucleotide, and either 
digested or not digested with RNase H (20). 
The RNA recovered from the respective 
samples was subjected to Northern hybrid- 
ization with the U3-like complementary 
DNA (cDNA) as probe. In the control 
sample and in the samples with an oligonu- 
cleotide but without RNase H digestion, 
the U3-like RNA was unaltered. Similarly, 
RNase H digestion in the presence of the 
nonspecific oligonucleotide had no effect 
on the mobility of the RNA. In contrast, 
RNase H treatment in the presence of the 
box B or box A oligonucleotides resulted in 
virtually complete ablation of the U3-like 
RNA component. These results, together 
with the processing results in Fig. 6, indi- 
cate that the integrity of the box A se- 
quence is essential for in vitro processing of 
the 5' ETS substrate. The residual process- 
ing activity present after RNase H treat- 
ment in the presence of the box Especific 
oligonucleotide may indicate either that ab- 
lation was incomplete or that residual U3- 
like RNA fragments produced as a result of 
cleavage within box B retain some activity. 
For example, if box B is used to locate the 
cleavage sites within the substrate RNA, 
removal of the box B sequence might be 
expected to reduce the rate of the reaction. 

Although we were able to reconstitute 
processing activity after RNase inactivation 
by the readdition of bulk unfractionated 
RNA from S. acldocaldanus, attempts to 
reconstitute activity with the use of S. aci- 
docaldarius U3-like RNA transcribed in 
vitro from an SP6 promoter have so far 
been unsuccessful. The in vitro-transcribed 
RNA lacked several nucleotides at the 5' 
end; these may be essential for function or 
correct folding. Furthermore, the processing 
complex contains several additional RNAs 
that have been identified by pCp end-label- 
ing. A cDNA copy of one of these RNAs 
has been cloned and sequenced; it contains 
box C and D motifs but has not been fur- 
ther characterized (2 1 ). 

Our results raise several questions. First, 

SCIENCE VOL. 268 19 MAY 1995 

what is the evolutionary origin and phylo- 
genetic distribution of RNP particles con- 
taining a U3-like RNA? And second, what 
was the primordial function of these parti- 
cles? All eukaryotes possess U3-containing 
snoRNPs and these are essential for Drocess- 
ing and maturation of small-subunit rRNA 
(6, 11, 13, 14). We have shown that a 
processing activity containing an essential 
U3-like RNA is also present in the crenar- 
chaeota (or eocytic) branch of the archaea. 
If the presence of a fibrillarin-like protein is 
indicative of this type of processing, then it 
is likely that the same activity is also 
present in the euryarchaeota (or methano- 
gen-halophile) branch of archaea in which 
fibrillarin-like genes have been identified 
(22). We have recently observed that hu- 
man antibodies to fibrillarin cross-react 
with a major S. acidocaldarius protein that 
copurifies with the S. acldocaldarius process- 
ing activity (21). We suggest that this ac- 
tivity may be universally present in the 
archaea and that its primary (and perhaps 
primordial) function may be to mediate the 
5' end maturation of small-subunit rRNA. 
As far as we are aware, to date, fibrillarin or 
U3 RNA-like molecules have not been de- 
tected in eubacteria. 

In summary, our results demonstrate that 
the use of RNP particles for the processing 
and maturation of rRNAs is an established 
feature that predates the divergence of ar- 
chaea and eukaryotes. Furthermore, the in 
vitro processing assay described here and 
the ability to reconstitute processing activ- 
ity after nuclease inactivation suggest that 
it may soon be possible to address directly 
the role of U3 RNA in the endonucleolytic 
cleavages of RNA and the more complex 
process of ribosome subunit assembly. 
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Revival and Identification of Bacterial Spores in 
25- to 40-Million-Year-Old Dominican Amber 

Raul J. Cano* and Monica K. Borucki 

A bacterial spore was revived, cultured, and identified from the abdominal contents of 
extinct bees preserved for 25 to 40 million years in buried Dominican amber. Rigorous 
surface decontamination of the amber and aseptic procedures were used during the 
recovery of the bacterium. Several lines of evidence indicated that the isolated bacterium 
was of ancient origin and not an extant contaminant. The characteristic enzymatic, 
biochemical, and 16s ribosomal DNA profiles indicated that the ancient bacterium is most 
closely related to extant Bacillus sphaericus. 

Microorganisms have been isolated from 
various types of ancient materials, including 
salt crystals, deep earth cores, and fossilized 
animals and plants ( 1 ,  2).  All such claims of 
ancient origin have faced the criticism of 
being a result of modern environmental 
contamination based on the sense that vi- 
able, ancient isolates are unlikely. This 
skepticism stems primarily from the extrap- 
olation of survival curves of modern bacte- 
ria that suggest that accumulated damage 
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and macromolecular decay would preclude 
viability (3). 

Morphological and biochemical data 
about ancient bacteria are scarce, preclud- 
ine detailed studies of bacterial metabolism, " 
origins, and evolution. Sequence data de- 
rived from the 16.5 ribosomal RNA (rRNA) 
have been used to construct a ph~logenetic 
tree for modern prokaryotes (4). Such data 
from both ancient bacterial DNA and Ba- 
cillus spp. from amber samples of known age 
can be used to analyze bacterial phylogeny 
and the rate of nucleotide substitution for 
various genes in this taxon. 

Bacillus is an ancient and ubiquitous bac- 
terial genus characteristically capable of 
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