
pulses to these potentials, although the  spa- 
tially averaged [Ca2+], increased slonrly to  
relatively h ~ g h  concentratlons (Fig. 4, A 
and B). Calcium entry through L-type C a 2 +  
channels (V, = -20 mV) was tnuch tnore 
effective in  triggering local [Ca2+], tran- 
slents than a n  Increase in  the  average 
[Ca2+], in the  cell (V, = +80 mV) (Fig. 
4C) .  Local [Ca2+], transients at high posi- 
tive clatnp voltages were observed only In 
cells showing Ca2 + waves ( 16). 

Our  data support the  concept that 
[Ca2+], translents under normal conditions 
( that  is, without verapam~l)  can be ex- 
plained by recruittnent of more local 
[Ca2+], translents with the same character- 
istics as those observed here. First, the hell- 
shaped voltage dependence of the  number 
of local [Ca2+], transients (Figs. 3B and 4B) 
is slmilar to that of the spat~ally averaged 
[Ca2+], transient (24),  after accounting for 
the  average [Ca2+], due to Na-Ca ex- 
change. Second, the  latency histograms are 
explicable in terms of the  gating of L-type 
Ca2+ channels in  guinea pig cardlac cells 
(1 i), although channel gating may he mod- 
lfied in  the  presence of verapa~nil  (14).  
Latency histogratns cannot yet be compared 
with measurements of whole cell S R  Ca2+  
release flux because these are not yet avail- 
able for guinea pig cells. Accordingly, we 
determined how many local [Ca2+], tran- 
sients must be evoked to  produce the  nor- 
mal whole cell [Ca2+], transient. A t  0 mV, 
nre observed that three local [Ca2+], tran- 
sients were elicited, o n  average, in  the  first 
40 Ins. This yields a peak f r e q ~ ~ e n c y  of -2 
S C '  p,m-' along the  length of the scanned 
cell. As the  peak average [Ca2+], is 120 nM,  
the  contribution of each local [Ca2+], tran- 
sient to the average [Ca2+], is 40 nM. 
Therefore, to produce a whole cell [Ca2+], 
transient of 1.5 p,M ~ ~ n d e r  normal condi- 
tions, the peak frequency of local [Ca2+], 
transients would have to he a t  least 12 times 
greater than that observed here in the pres- 
ence of verapamil. In  summary, the  [Ca2+], 
transient in the  whole cell can be explained 
in terms of the recruittnent of single, ste- 
reotyped unitary events (local [Ca2+], tran- 
sients), controlled locally by single L-type 
Ca2+ channels in  the plasma membrane. 
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The Control of Calcium Release in Heart Muscle 
M. B. Cannell, H. Cheng, W. J. Lederer* 

The control of calcium release from intracellular stores (the sarcoplasmic reticulum) in 
cardiac muscle was examined with the use of a confocal microscope and voltage clamp 
techniques. Depolarization evoked graded calcium release by altering the extent of spatial 
and temporal summation of elementary calcium release events called "calcium sparks." 
These evoked sparks were triggered by local L-type calcium channel currents in a 
stochastic manner, were similar at different potentials, and resembled spontaneous 
calcium sparks. Once triggered, the calcium release from the sarcoplasmic reticulum 
during a calcium spark was independent of the duration of the triggering calcium influx. 
These results were used to develop a unifying model for cardiac excitation-contraction 
coupling that explains the large (but paradoxically stable) amplification of the trigger 
calcium influx by a combination of digital and analog behavior. 

I n  cardiac muscle, the  archetypical ryano- 
dine receptor (RyR) is gated by Ca2+  influx 
across the  plasmalemma and serves to  am- 
plify the Ca2+  influx by releasing sufficient 
Ca2+  from the  sarcoplasmic reticulum (SR) 
to actlvate contraction. This process is the  
cornerstone of excitation-contraction (EC) 

M B. Cannell, Department of Pharmacology and Cnical 
Pharmacoloqv, St Georqe's Hos~ltal  Medlcal School, 

coupling and has been tertned Ca2+-in- 
duced Ca2+release (CICR) (1 ). Because the  
Ca2+  efflux from the  S R  is between 10 and 
65 times larger than that due to the  Ca2+  
current (Ic,) through channels in the plas- 
ma membrane (2 ,  3), the  release of C a 2 +  
will tend to cause further release, leading to 
uncontrolled regenerative behawor (posi- 
tive feedback). However, Ca2+  release from 
the  S R  seetns to be tightly regulated by both 

Cranmer ~ e ~ r e c e ,  L O ~ ~ O ;  SW17 ORE, UK. the  atnplitude and duration of lca ( 2 , ' 4 ,  5). 
H. Cheng and W. J. Lederer, Department of Physoogy 
and Medical Biotechnology Center, University of Mary- Ca2+-dependent inactivation of Ca2+ re- 
land school of Medicne, 660 West Redwood Street, lease (1 ) could have provided a solution to 
Baltmore, MD 21 201, USA, this paradox; however, this mechanism has 
*To whom correspondence should be addressed. not been observed in intact cells (4 ,  6) .  T o  
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clarify how Ic, controls Ca2+ release from 
the SR, we used confocal microscopy to 
acquire spatially and temporally resolved 
images of intracellular Ca2+ concentration 
([Ca2+],), combined with whole cell volt- 
age clamp techniques to control I,, simul- 
taneously (7). 

Activation of I,, normally leads to a 
large synchronous increase in [Ca2+], (Fig. 
1A) (8). The [Ca2+], transient increased 
with a latencv of 2 ms and reached 90% of 
its peak value in 20 ms. As reported previ- 
ously, termination of the triggering Ica be- 
fore the peak of the [CaZ+], transient results 
in a smaller [Ca2+], transient (2, 4). How- 
ever, the confocal microscope reveals that 
[Ca2+], is not spatially uniform after such a 
stimulus; Caz+release only takes place at a 
limited number of sites (Fig. 1B) that vary 
randomly from beat to beat. This spatial 
nonuniformity in [CaZ+], is not the result of 
the spatial organization of Caz+release sites, 
because the control transient (Fig. 1A) and 
that activated by the brief Ca2+ tail current 
(Fig. lB), which occurs on repolarization 
(2, 4 ,  9), are much more uniform. The 
simplest explanation for this observation is 
that SR Ca2+ release occurs at discrete sites 
when a nearby Caz+channel opens (lo), 
and with a short pulse, the stochastic nature 

of channel gating and the finite latency in A 
the opening of the Ca2+ channel (1 1 ) result 
in not all release sites being activated. 

As the duration of the Ca2+ influx is 
increased, the spatial averaged [Ca2+], (Fig. 
2, A and B) and the rate of rise of [Ca2+], 
increases (Fig. 2C). The changes in the rate 
of rise of [Ca2+], have not been observed in 
earlier studies (2, 4, 5). which may be 
explained by the enhanced time resolution 
arising from the use of flu0 3 and a confocal 
microscope in this study. Because [Ca2+], 200 ms 
continues to increase for about 10 ms after 
the cessation of I,, as shown in Fig. 2B 
(1 2), these results demonstrate that discrete B 
CaZ+ release sites (1 3,  14) are activated by 
local Ica and the termination of release is 10 
not regulated by the Caz+channel current. zE -40 

The.conclusion that the time-course of 
Ca2+ release is not tightly controlled by the - 
duration of the CaZ+ channel current is 5 
supported by an examination of the time E 
course of CaZ+ release from the SR in re- 
sponse to very short depolarizing pulses (-1 a 
ms). In response to such short pulses, CaZ+ 

-2.5 .. . .... . 
release often occurs at a single isolated site 
(Fig. 3A), thus eliminating any possible :::: : 
influence by the activation of adjacent SR :::: . 

pies a region about 2 km in diameter, 

B u 
20 ms 

C 

.P., - I a. -1 :;v jo i2 - Pulse duration (ms) 
80 

Fig. 2. Time-dependent recruitment of SR 
Ca release during EC coupling. (A) Spatially av- 
eraged [Ca2+], transients were obtained from 

-90 line-scan images in response to various periods 
of Ca2+ influx. Five superimposed records are 
shown, indicating that for a depolarization 

Fig. 1. Effect of depolarization duration on the uniformity of Ca2+ release from the SR in rat heart cells. 
(A) Confocal line-scan image of a fluo 3-loaded rat heart cell under voltage clamp. Traces show (from top 
to bottom) spatial average fluorescence, line-scan fluorescence image, membrane potential, and mem- 
brane current. Each line-scan image is a plot of fluorescence along a scanned line (that is, position) on the 
ordinate versus time (on the abscissa) (7). The acquisition of current data was limited to 150 ms around 
the depolarizing pulse to enable a high sampling frequency (the rest of the trace has been extrapolated for 
clarity). (B) Ca2+ transient in response to a brief period of Ca2+ influx. I,, was activated for 3 ms and then 
terminated by further depolarization to +80 mVfor 80 ms. This protocol avoided the complication of a tail 
current, which can also evoke a large Ca2+ release, as seen when the cell was repolarized from +80 mV. 

from -40 mV to +10 mV for 1.75, 2.75, 4.75, 
6.75, or 10.75 ms, the [Ca2+], transient in- 
creased from a resting fluorescence ratio of 1.0 
to 1.37, 2.04,3.17,3.85, and 4.1 1, respectively. 
(B) The voltage clamp protocol and the associ- 
ated Ca2+ currents and fluorescence records 
on an expanded time scale. The capacity tran- 
sients associated with the step changes in 
membrane potential are truncated. The fluores- 
cence record shows that the latency for the 
earliest release of Ca2+ was less than 2 ms. (C) 
The dependence of the maximum rate of change 
of the fluorescence record on the duration of 
voltage clamp pulse to +10 mV. The smooth 
curve through the data points was plotted by 
eye. 
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reaches its peak in about 10 ms, and de- imize the number of sarcolemmal (SL) 
clines with a half-time of -20 ms. A small Ca2+ channels opened), and this protocol 
Ca2+ influx through Ic, can also be pro- (Fig. 3B) also produces a local Ca2+ release 
duced by a small depolarizing pulse (to min- (14), albeit with a longer latency that may 

be explained by the low probability of Ca2+ 
channel opening at such negative poten- 

I from the spontaneous gating of a "Ca2+ 
lo,] release unit" [composed of one or a small 

group of Ca2+ release channels (RyRs) 

g 
(16)] in the SR of quiescent unstimulated 
cells (Flg. 3C). The similarity between 
spontaneous Ca2+ sparks and evoked local 

-, 1.0 release events includes many properties 
' I -  

, . , - such as kinetics, amplitude, and spatial size 
. b ,*. .'+ and suggests that spontaneous and evoked 

- Ca2+ sparks both arise from the gating of an 

>! -70 -- 
-& 

a I 
C '+w - 

\d 
-70 60 -50 -4 

mV - 
100 ms 

C D --. 
- s 14 

1 .o -. . 
I 
100 Ins 

Ca2+ sparks. (A) Depolanzatlon from -40 mV to 

the Ca2+ spark IS shown above; the lntenslty of a 
2-pm-wlde reglon centered on the spark IS plot- 0 0 
ted below. FIFO IS the ratlo of fluorescence (F) 0 # ) 4 0 6 0 K l  0 1 2 3 4 5 6 7 8  

normallzed to the fluorescence under aulescent Fo&i0n (Im) ~ P - l ~ I r n  
conditions (F,) (15). The peak fluorescence ratio 
was 2.08 at 10 ms. A large uniform tail [Ca2+], 
transient is also observed on repolarization. (B) 
Depolarization from -50 to -35 mV activated a 
Ca2+ spark with a latency of 32 ms. The peak 
fluorescence ratio was 2.07 at 10 ms. (C) Sponta- 
neous Ca2+ spark observed in a voltage-clamped 
ventricular myocyte held at -80 mV in the pres- 
ence of 100 pM Cd2+ (top pair of traces; peak 
ratio, 1.92 at 10 ms). The bottom pair of traces 
shows a spontaneous Ca2+ spark observed in an 
unclamped quiescent rat ventricular myocyte load- 
ed with flu0 3 [by the AM method (191. The peak 
fluorescence ratio was 2.18 at 10 ms. 

elementary Ca2+ release unit and that the 
number of RyRs in such an elementary unit 
is about the same. (15, 17). 

To explain both forms of behavior, we 
propose that the probability of evoked Ca2+ 
spark occurrence depends on the local 
[Ca2+l near the RyR release unit (10, 13) 
and that the duration of the Ca2+ release 
during a Ca2+ spark is determined by the 
(intrinsic) gating of the SR release channels 
that form the release unit (17). The idea 
that local elevations of [Ca2+ ] are unable 
to spread regeneratively across release units 
under normal conditions (1 8) is supported 
by the observation that evoked sparks do 
not activate Ca2+ release in neighboring 
regions (13, 15), This is due to low sensi- 
tivity of the RyR to [Ca2+], under normal 
conditions (10, 15). It therefore follows 
that the stochastic recruitment of Ca2+ re- 

Fig. 4. Stochastic behavior of evoked Ca2+ sparks. (A) From a holding potential of -80 mV, voltage 
ramps to -40 mV were applied over 610 ms; the data show the range -65 mV to -40 mV. Three 
example line-scan images obtained during these voltage ramps are shown at the left. Representative 
local fluorescence traces (plotted on the right) show the amplitude and time course of the evoked sparks 
and no change of local [Ca2+], in nonsparking regions. (6) There was little change in membrane current 
during the ramp (top trace). Spatially averaged [Ca2+], increased slightly during the ramp depolarization 
(middle trace); this almost entirely resulted from the increase in spark frequency. (C) The occurrence of 
Ca2+ sparks in line-scan images during 12 successive ramps is plotted as a function of position (with 
1.8-pm-wide histogram bins). (D) The data in (C) have been used to derive a probability density function 
for the occurrence of sparks during the ramps. The solid line superimposed on the histogram is a Poisson 
distribution having the same mean number of sparks per 1.8 pm (pooling the data from the 12 images 
gave a mean of 2.22 sparks per 1.8 pm). To examine whether these two distributions are statistically the 
same (hypothesis Hd, we used the x2 test. Because the calculated x2 is less than x2,,, the hypothesis 
H, is accepted. 
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lease units during the Ca2+ transient must 
result largely from the time- and voltage- 
dependent opening of nearby SL 
Ca2+channels. 

If the [Ca2+], transient arises from the 
summation of Ca2+ sparks activated by 
the opening of single surface membrane 
Ca2+ channels, then the activation of re- 
lease units should be stochastic and follow 
Poisson statistics when the probability of 
Ca2+ channel opening is low. To examine 
this point, cells were slowly depolarized 
from negative potentials in order to exam- 
ine spark behavior around the foot of the 
I,, activation curve (Fig. 4A). As a cell 
was depolarized, the production of Ca2+ 
sparks increased exponentially, with an 
apparent threshold of about -55 mV, in- 
creasing e-fold in 7.5 mV (Fig. 4B). This 
voltage dependence is very similar to that 
of the activation curve of the L- tv~e  Ca2+ , L 
channel, which shows an e-fold change in 
open probability over a 6- to 8-mV change 
in membrane potential (19). Our results 
thus support the idea that these evoked 
Ca2+ sparks result from the activation of 
L-type Ca2+ channels (20). The similarity 
of the voltage dependence of both Ca2+ 
sparks and L-type Ca2+ channels provides 
the first evidence that a single L-type 
Ca2+ channel activates a single release 
unit. Visually, the pattern of spark activa- 
tion appears to be stochastic because the 
sparks vary in timing and positioning dur- 
ing each ramp depolarization. After mea- 
surement of the number of sparks that 
occur in everv 1.8 um of the scanned line 
during 12 repeated voltage ramps, the his- 
togram of spark occurrence showed no 
systematic spatial pattern (Fig. 4C). The 
probability density function describing the 
occurrence of evoked sparks is compared 
to a Poisson distribution in Fig. 4D. A x2 
test suggests that there was no significant 
difference between the observed data and 
a Poisson process, which supports the idea 
that spark activation by Ca2+ channel 
opening is a stochastic process. 

These results indicate that the macro- 
scopic [Ca2+], transient can be explained by 
the summation of a large number of micro- 
scopic SR Ca2+ release events called Ca2+ 

sparks. During EC coupling, the probability 
of Ca2+ spark occurrence is greatly in- 
creased by local Ca2+ influx due to la (21 ). 
However, once activated, Ca2+ release dur- 
ing a Ca2+ spark is determined by the in- 
trinsic gating of the SR Ca2+ release chan- 
nels (22), regardless of the membrane po- 
tential and the duration of the 1 Thus, 
the gradation of the whole cell [ c F l i  tran- 
sient is achieved by altering the probability 
of Ca2+ spark production, rather than by 
modulation of the amplitude of Ca2+ sparks 
as has been previously suggested (23). Am- 
plification of the trigger Ca2+ influx 
through the L-type Ca2+ channel during 
EC coupling occurs by two mechanisms 
(Fig. 5). The first is that the Ca2+ flux from 
activated SR release units is much greater 
than that due to the Ca2+ channel. This 
greater flux occurs because the conductance 
of the RyR is greater than that of the L-type 
Ca2+ channels (24), and the grouping of 
RyR into release units may augment single 
RyR Ca2+ efflux (13, 15, 25). These fea- 
tures of the release unit represent analog 
"gain" in the sense that the L-type Ca2+ 
channel flux is amplified by the SR release 
unit flux. Second, the duration of the Ca2+ 
flux from an activated SR release unit is 
considerably longer than the mean open 
time of the L-type Ca2+ channel. This "dig- 
ital pulse stretching" behavior further in- 
creases the gain of EC coupling (26) but 
does so without introducing instability be- 
cause the SR release unit eventually closes 
on its own. The spontaneous closure of the 
RyRs in a functional unit allows the high 
local [Ca2.+], to decline rapidly in the vicin- 
ity of the Ca2+-sensing sites of the individ- 
ual release unit (27), so that the release unit 
is unlikely to reopen without further Ca2+ 
influx from a nearby SL Ca2+ channel. 
Because the evoked SR Ca2+ release is spa- 
tially localized and because the sensitivity 
of the unit to be triggered by local [Ca2+] is 
low (10, 15), each SR release unit is largely 
uncoupled from its neighboring release 
units under normal conditions. Although 
these features limit the maximal gain at- 
tainable, they allow the tight and graded 
control of intracellular Ca2+ signaling (by 
the triggering I,,). Numerical analysis of 

Fig. 5. Diagram illustrating how digital and analog DHPR c 
components combine to increase amplification 02-- 
during EC coupling. Inward Ca2+ flux through the 
L-type Ca2+ channel [dihydropyridine receptor R ~ R  
(DHPR)] triggers SR Ca2+ release by means of response 
CICR. In all cases, the area under the curves 
shows the flux associated with the different pro- clowd J Time - l i  
cesses; thus the ratio of areas represents gain. 
Analog amplification of the Ca2+ influx (downward deflection) through the DHPR arises from the larger 
efflux of Ca2+ from an activated SR release unit (red area). Digital gain (yellow area) arises because the 
mean open time of the SR Ca2+ release unit is longer than that of the triggering DHPR-dependent Ca2+ 
influx. The overall gain is the product of the analog and digital gain components (orange, red, and yellow 
areas). 

EC coupling has shown that if all the re- 
quired gain were analog, then EC coupling 
would be regenerative and unstable (25). 
However, the digital behavior reported here 
ensures that the gain inherent in the ubia- " 
uitous CICR mechanism does not result in 
instability and provides a unifying frame- 
work for the regulation of cardiac EC cou- 
pling. This combination of digital and an- 
alog signal transduction mechanisms may 
apply to other (sub)cellular signal transduc- 
tion svstems and ~rovides a solution to the 
general problem of simultaneously achiev- 
ing high gain and stability. 
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Identification of hSRPla as a Functional 
Receptor for Nuclear Localization Sequences 

Karsten Weis, lain W. Mattaj, Angus I. Lamond* 

Import of proteins into the nucleus is a two-step process, involving nuclear localization 
sequence (NLS)-dependent docking of the substrate at the nuclear envelope followed 
by translocation through the nuclear pore. A recombinant human protein, hSRPlcu, 
bound in vitro specifically and directly to substrates containing either a simple or 
bipartite NLS motif. hSRPlcu promoted docking of import substrates to the nuclear 
envelope and together with recombinant human Ran reconstituted complete nuclear 
protein import. Thus, hSRPlcu has the properties of a cytosolic receptor for both simple 
and bipartite NLS motifs. 

Import of proteins into the nucleus is an 
active process consisting of at least two 
steps: first, the energy-independent docking 
of the substrate to the nuclear envelope, and 
second, translocation through the nuclear 
pore complex, which requires energy ( I ) .  
The presence of a specific NLS in the im- 
ported protein is a prerequisite for both 
steps. In most cases the NLS consists either 
of a short domain of basic amino acids-for 
example, the sitnple NLS of SV40 T antigen 
(PKKKRKV)-or of two stretches of basic 
residues separated by a spacer of about 10 
amino acids, the bipartite NLS motif (2).  

A variety of biochemical and genetic ap- 
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proaches have been used to search for factors 
involved in nuclear protein import (3). Bio- 
chetnical fractionation of import activities, 
by means of an in vitro transport assay ( 4 ) ,  
has shown that the two steps of nuclear 
protein import can be mimicked by two cy- 
tosolic fractions, A and B (5). Fraction B 
mediates the translocation step and consists 
of two protein components, Ran/TC4 and 
pp15 (6-8). Recently, importin has been 
identified as a Xenopus factor required for the 
first step of nuclear import (9). Importin is 
homologous to the yeast protein SRPl (sup- 
pressor of RNA polymerase 1) (1 @). Factors 
that bind to the NLS motif in vitro are likely 
to play an important role in the import 
reaction. Such NLS-binding factors could 
either be free cytosolic proteins or could be 
associated with the nuclear envelope. Sever- 
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