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Environmental Implications of
Electric Cars

Lester B. Lave, Chris T. Hendrickson, Francis Clay McMichael

California and the Northeast states have
passed laws requiring that 2% of model year
1998 cars must be “zero emissions” vehi-
cles—that is, electric cars (I). Required
sales of electric cars are to increase after
1998. Electric vehicle technology has the
advantage that it produces no air pollution
at the point of use, so that if the electricity
is generated in a distant place, electric cars
are a means of switching the location of
environmental discharges. A large crowded
city such as Los Angeles or New York has
large amounts of discharges, even if care is
taken to protect the environment, because
the millions of gasoline-powered vehicles in
such cities emit large quantities of carbon
monoxide, nitrogen oxides, and volatile or-
ganic compounds. Electric vehicle technol-
ogy can move emissions to less crowded and
less polluted locations. Centralized electric
generation plants may also be able to
achieve fewer emissions per vehicle mile
than do internal combustion engines in ve-
hicles (2).

The environmental effects of internal
combustion engines are well known. Pollu-
tion controls have lowered emissions from a
controlled car by 98% as compared with
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those from an uncontrolled car. For electric
vehicles, generating electricity for recharg-
ing batteries can cause considerable envi-
ronmental harm (3). Analyses have been
done on the environmental effects of gaso-
line as compared with those of electricity
generation (2). In response to the electric
vehicle mandate, automakers have pro-
posed ultralow emissions vehicles.

We focus on the environmental conse-
quences of producing and reprocessing large
quantities of batteries to power electric cars.
For vehicles that are to be mass produced in
late 1997, lead-acid batteries are likely to be
the only practical technology. Smelting and
recycling the lead for these batteries will
result in substantial releases of lead to the
environment. Lead is a neurotoxin, causing
reduced cognitive function and behavioral
problems, even at low levels in the blood
(4). Environmental discharges of lead are a
major concern. For example, eliminating
tetraethyl lead (TEL) from U.S. gasoline
greatly reduced blood-lead levels in chil-
dren (5).

Alternative battery technologies that
are currently available include nickel-cad-
mium and nickel metal hydride batteries,
which are much more expensive than lead-
acid batteries. In addition, nickel and cad-
mium are highly toxic to humans and the
environment. Technologies such as sodium-
sulfur and lithium-polymer batteries are un-
likely to be commercially available for
years.
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Characteristics of Electric
Vehicles and Batteries

A gasoline engine supplied with a 40-liter
tank (less than 11 gallons) giving 15 km/
liter (about 35 miles per gallon) allows a
range of 600 km (about 375 miles). A kilo-
gram of gasoline is equivalent to 13,000
watt-hours (Wh); in contrast, a typical
lead-acid battery contains only 38 Wh per
kilogram. Even adding in the engine, trans-
mission, and so forth, a gasoline-powered
car has more than seven times the range of
an equivalent electric car using current
technology.

The large weight of batteries needed to
supply energy means that an electric car
will be heavier, will cruise at lower speeds,
and will have much less range than an
equivalent gasoline vehicle (6). The focus
of electric vehicle design is thus an ex-
tremely light-weight vehicle that is capable
of carrying the batteries.

Range, acceleration, average velocity,
and discharge rate for an electric vehicle are
critical design and operation parameters
(7). The practical range of a vehicle is less
than the theoretical maximum range (8).
Drivers must accelerate and stop, and they
drive faster than the speed that maximizes
range. Even with regenerative braking,
starting and stopping decrease range. In
addition, parasitic losses such as those from
an air conditioner, heater, radio, and head-
lights decrease range. Fully discharging the
battery at each cycle reduces overall battery
life.

We considered a range of representative
scenarios of battery and driving character-
istics for a small automobile powered by
lead-acid batteries (Table 1). These repre-
sent a current technology and technology
goals for battery energy density and avail-
able charge-discharge cycles before replace-
ment (I, 9).

The vehicle energy requirement (row 3
in Table 1) is a measure of performance,
representing the average energy required for
distance traveled. The required energy will
vary with vehicle efficiency, driving de-
mands, vehicle weight, and other character-
istics. For example, parasitic losses can use
10 kWh per hour of operation if the heater
or air conditioner is being used along with
the headlights, radio, or power steering, and
this would dramatically increase the energy
requirements shown in Table 1. A car going
8 km/hour [5 miles per hour (mph)] in a
snow storm could have a range of less than
24 km (about 15 miles), because of the
parasitic losses and the reduced energy
available from the battery because of low
temperatures.

We assume an average distance per driv-
ing cycle of 80 km (50 miles). The maxi-
mum vehicle range would be higher, but
discharging the batteries excessively in each
charge cycle would reduce the battery life
and the ultimate number of life-cycle miles.
In addition, a driver would not risk running
the battery to exhaustion on the road.

Direct comparison between the battery
and vehicle assumptions shown in Table 1
and existing electric vehicles is difficult
because of proprietary considerations and
driving assumptions. For example, the range
of a vehicle can be increased by elimination
of accessory power drains and by careful
driving to reduce acceleration cycles and
maximum velocity. As one comparison, a
General Motors 1994 test vehicle, the Im-
pact, has a battery weight of 500 kg and an
energy supply of 16.8 kWh, and reports a
replacement cycle for batteries of 32,200 to
64,400 km (20,000 to 40,000 miles), which
is within the range of (or more pessimistic
than) the values shown in Table 1 (10). A
Department of Energy test vehicle, ETV-1,
reported a battery energy density of 37.5
Wh/kg and 500 driving cycles per battery,

Table 1. Typical lead-acid battery and electric vehicle performance.

Battery and vehicle assumptions

Vehicle scenarios

Available Goal
technology technology

Energy density of battery (Wh/kg) 18 56
Number of driving cycles per battery 450 1,000
Vehicle energy requirements (Wh/km) 310 310
Average distance per driving cycle (km) 80 80
Energy for driving cycle (kWh) 25 25
Battery mass for driving cycle (kg) 1,378 443
Battery life-cycle distance (km) 36,000 80,000
Lead percentage of battery mass (%) 70 70
Battery lead mass (kg) 964 310
Battery lead per life-cycle kilometer (g/km) 27 4
Lead releases per life-cycle kilometer

Virgin production (4%) (mg/km) 1,072 155

Recycling production (2%) (mg/km) 536 78

Battery manufacture (1%) (mg/km) 268 39
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both of which are within the range of values
shown in Table 1 (8).

Unlike gasoline, the amount of energy
available from a battery depends on the rate
at which energy is being withdrawn. A driv-
er who wants to go from 0 to 97 km/hour (0
to 60 mph) in 8 s or one who wants to drive
at high speed greatly lowers the range of the
car. High-speed driving is especially costly.
The high speed requires more energy per
kilometer, and the rapid withdrawal of en-
ergy decreases the total amount of energy
available from the battery.

The Life Cycle of Lead:
Environmental Releases

Lead materials flow balances for the United
States and the world are generally incom-
plete (5, 11). The U.S. Bureau of Mines
found that over a 49-year period, 6.5% of
the primary lead production, 3.4% of the
secondary lead production, and 1.1% of the
lead processed in the manufacturing sector
were released to the environment (12). En-
vironmental regulations have lowered lead
discharges; our best estimate of current dis-
charges is that primary lead processing re-
leases about 4% of its lead production to the
environment, secondary lead processing re-
leases about 2%, and the manufacturing
sector releases about 1% of lead processed.

When the Environmental Protection
Agency (EPA) examined individual pro-
duction steps, the estimated uncontrolled
air emission factors for point sources from
primary lead processing averaged about
12% of lead processed (13). Fugitive emis-
sions not subject to point control are esti-
mated to be about 0.06% of production.
Environmental control would have to be
90% effective to reduce the uncontrolled
point air emissions of 12% to 1% of lead
production. Our estimate of total environ-
mental releases of 2 to 4% is likely to be an
underestimate of lead discharges at least for
the next few years.

Lead and lead compound releases and
transfers off site from large manufacturing
plants are reported in EPA’s Toxics Release
Inventory (TRI) (14). TRI reported that
1992 environmental releases were 1.2 Gg of
lead and 6.1 Gg of lead compounds, and
15.7 Gg of lead and 184.4 Gg of lead com-
pounds were transferred off site for recycling
and disposal. Lead losses for these trans-
ferred materials are unknown.

Lead wastes are also tracked as hazardous
materials (15). Control of lead emissions to
the air and water has generated large quan-
tities of solid hazardous waste to process and
contain. For 1989, the most recent year of
this information, the EPA reports that for
its Resource Conservation and Recovery
Act (RCRA) category D008 (lead-contam-
inated wastes), more than 830 Gg was gen-



erated in the United States, as reported by
manifests and permits under RCRA. RCRA
does not report the precise lead compounds,
so we cannot estimate the quantity of lead.
However, the TRI releases and RCRA lead
waste can be compared to the 842 Gg of
lead that was recycled in 1989 and the 491
Gg of lead from primary ore production.

Using 4% losses from virgin production,
2% losses from recycling and reprocessing,
and 1% losses from battery manufacturing,
we calculated the amount of lead dis-
charged into the environment for the two
vehicle scenarios in Table 1. The lead dis-
charge ranges from 1340 mg of lead per
kilometer (for the existing technology bat-
tery that has the lowest energy density and
shortest lifetime distance and uses virgin
lead) to about 117 mg of lead per kilometer
(for a goal technology battery that has high
energy density and long lifetime driving
distance and uses scrap lead). If a large
number of electric cars are produced, the
demand for lead for batteries will surge,
requiring that more lead be mined (16).

In 1972, leaded gasoline sold in the
United States contained 2.1 g of lead per
gallon. A vehicle of comparable size and
weight to those of an electric car, the Geo
Metro, gets about 19 km/liter (45 mpg)
(17). Using leaded gasoline, this vehicle
would emit 22 mg of lead per kilometer (or
35 mg per mile), with 25% of the lead
retained in the engine and exhaust of the
car. Thus, an electric car using batteries
with newly mined lead releases 60 times the
peak fraction released by combustion of
leaded gasoline. If use of recycled lead and
technology goal batteries is assumed, the
lead releases are only five times the TEL
emissions per kilometer.

The comparison is not as bad as these
ratios suggest. Lead from gasoline went into
the air in population centers, the route most
likely to expose humans. Most of the lead
discharged from lead smelting and repro-
cessing would go to land discharges where it
is less available. However, according to
1992 TRI figures (14), 17% of the total lead
and 11% of the lead compounds released to
the environment from on-site lead process-
ing facilities is emitted into the air. Lead in
solid waste would slowly leach into the
environment, exposing humans. Secondary
lead smelters are located around the United

States, with major facilities in the North-
east and California. Eventually, even some
lead discharged in rural areas would find its
way into water and windblown dust, expos-
ing people in major cities. Recovery of lead
discharged into the environment can be
extremely expensive (18).

Conclusions and Policy
Implications

Electric cars have been criticized for their
cost and poor performance as compared
with current cars. The more fundamental
problem is that these vehicles do not de-
liver the promised environmental bene-
fits. A 1998 model electric car is estimated
to release 60 times more lead per kilo-
meter of use relative to a comparable car
burning leaded gasoline. The United States
banned TEL in large part for health rea-
sons. Electric vehicles would introduce
lead releases to reduce urban ozone, a
lesser problem. These lead discharges
would damage ecology as well as human
health. Even with incremental improve-
ments in lead-acid battery technology and
tighter controls on smelters and lead repro-
cessors, producing and recycling these bat-
teries would discharge large quantities of
lead into the environment.

Electric vehicles will not be in the public
interest until they pose no greater threat to
public health and the environment than do
alternative technologies, such as vehicles us-
ing low-emissions gasoline. Nickel-cadmium
and nickel metal hydride batteries are much
more expensive and highly toxic; they do
not appear to offer environmental advantag-
es. Sodium-sulfur and lithium-polymer tech-
nologies may eventually be attractive.
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