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Gene trap transposon mutagenesis can identify essential genes whose functions in later 
development are obscured by an early lethal phenotype. In higher plants, many genes are 
required for haploid gametophyte viability, so that the phenotypic effects of their dis- 
ruption cannot be readily observed in the diploid plant body. The PROLlFERA (PRL) gene, 
identified by gene trap transposon mutagenesis in Arabidopsis, is required for megaga- 
metophyte and embryo development. Reporter gene expression patterns revealed that 
PRL was expressed in dividing cells throughout the plant. PRL is related to the MCM2-3-5 
family of yeast genes that are required for the initiation of DNA replication. 

T h e  plant life cycle alternates between 
sporophytic (diploid) and gametophytic 
(haploid) generations. In flowering plants, 
the haploid phase of the life cycle is reduced 
to just a few cell divisions, but the require- 
ment for the haploid gametophyte to sur- 
vive means that mutations in essential 
genes, such as cell division cycle genes, will 
not be transmitted by either the male or the 
female gametophyte or both (1). The func- 
tions of these genes in the diploid sporo- 
phyte (the plant body) are thus difficult to 
discern. Mutations affecting meiosis and ga- 
metophyte development have been de- 
scribed in maize (2) and Arabidopsis (3), but 
cell cycle mutations have not been de- 
scribed molecularly in plants as they have 
in animals (4). Domains of mitotic activity 
in plants have been defined in meristems 
and lateral organ vrimordia bv labeling 
studies (5) and Ly in-situ hybridization with 
cell division cycle gene homologs (6). The 
peripheral zone of the shoot apical meri- 
stem and the proximal domain of immature 
leaves are examples of zones with high mi- 
totic activity. As in Drosophila (7), the 
phase of the cell cycle in plants may restrict 
developmental potential in some patterning 
processes, such as stomata1 complex differ- 
entiation in the epidermis (8). 

Insertional mutagenesis through use of 
gene traps and enhancer traps can be used to 
identify late as well as early functions of 
genes that are disrupted by insertion. This is 
because gene expression can be examined in 
viable heterozygotes even when loss-of-func- 
tion mutations are lethal in the homozygous 
or haploid state (9, 10). In plants, transfer 
DNA (T-DNA) vectors have been used to 
integrate promoter trap and enhancer trap 
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reporter genes into the genome of higher 
plants by Agrobacterium-mediated transfor- 
mation (1 1). However, T-DNA insertions 
cannot be remobilized and frequently com- 
prise multiple copies at a single locus, there- 
by complicating interpretation of expression 
patterns. As an alternative, we have devel- 
oped a gene trap transposon tagging system 
in the higher plant Arabubpsis tfdanu, using 
the maize transposable elements Activator 
(Ac) and Dissociation (Ds), which also func- 
tion in Arububpsis ( 1  2, 13). Gene trap re- 
porter genes are preceded by splice acceptors 
so that insertion into introns results in re- 
porter gene fusions ( 1  0, 14). In our system, 
each Ds gene trap (DsG) element carries a 
P-glucurmidase (gusA or uidA) reporter gene, 
  receded by splicing signals, which functions 
as an "exon trap" (13). 

In a screen for gene trap expression in 
seedlings, we have identified a gene re- 
quired for both gametophytic and sporo- 
phytic development. F, seedlings from 77 
independent gene trap insertion lines were 
stained for GUS activity, and 18 lines were 
identified that exhibited GUS expression in 
some region of the seedling. GUS expres- 
sion patterns in these lines varied from 
uniform expression throughout the seedling 
to expression localized to specific regions or 
tissues (13). In one line, GT148, GUS was 
expressed throughout the early leaf primor- 
dia (Fig. 1, A and B), but was eventually 
lost from the distal domain of immature 
leaves, where mitotic activity is first dimin- 
ished (15). No GUS activitv was observed . , 

in mature leaves. Staining was observed in 
root tips (16) and lateral root primordia 
(Fig. lC),  but not in differentiated root 
tissue. GUS was also expressed throughout 
young flower buds (Fig. ID), but became 
localized to the carpels, and finally to the 
ovules (Fig. 1E) in older flowers. After fer- 
tilization, GUS was expressed uniformly in 
the embryo (Fig. IF). Because the gene 
controlling GUS expression in line GT148 
appears to be expressed primarily in prolif- 
erating cells in each tissue, the gene was 
named PROLlFERA (PRL). 

Exon sequences upstream of the DsG 
insertion in PROLlFERA were isolated 
through the use of 5' RACE-PCR (1 7, 18), 
and sequencing revealed that the gusA re- 
porter had been fused in frame with an 
upstream sequence at the second splice ac- 
ceptor (Fig. 2A). The RACE-PCR product 
was used to screen a flower complementary 

Fig. 1. Histochemical localization of GUS activity in gene trap line GT148. (A) Emerging primary leaves, 
stipules, and developing leaf primordia (Nomarski optics). (B) Immature leaf. (C) Lateral root primordia 
(Nomarski optics). (D) The inflorescence. (E) Ovules. (F) Heart stage embryo (Nomarski optics). Tissues 
were stained in X-Gluc (30). 
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DNA (cDNA) library, and one of the 
cDNA clones was used to probe a Northern 
(RNA) blot from wild-type plants and 
plants heterozygous for the prl::DsG inser- 
tion (Fig. 2B). A 2.7-kb transcript was 
found in RNA from flowers and roots of 
heterozygous plants and in RNA from buds, 
flowers, and roots of wild-type Arabidopsis. 
No transcript was detected in RNA from 
mature leaves. An additional, 5.2-kb PRL 
transcript in RNA from heterozygous plants 
also hybridized with a probe specific for 
gusA, indicating that it was derived from a 
transcriptional fusion with the gene trap 
reporter gene (Fig. 2B). Thus, the GUS 
expression pattem appears to accurately re- 
flect the expression pattem of the PROLIF- 
ERA gene. 

The largest cDNA clone was 1.8 kb in 
size. RACE-PCR was used to isolate the 
remaining 5' sequences ( 19). A single open 
reading frame of 716 amino acids was pre- 
dicted from the cDNA sequence (20), and 

database searches (20) revealed strong ho- 
mology with a family of proteins involved 
in DNA replication and cell division that 
includes MCMZ, MCM3, and CDC46/ 
MCM5 in Saccharomyces cerevisiae, cdc2 1 + 

in Schizosaccharomyces pornbe, and the mam- 
malian P1 and BM28 proteins (21, 22). A 
central 200-amino acid region is highly 
conserved in all members of this family, and 
the PROLlFERA sequence is 40 to 70% 
identical to the other proteins within this 
region. This region contains a conserved 
adenosine triphosphate-binding domain 
(22). PRL is most similar in sequence to the 
hypothetical yeast protein YBR1441 (23) 
identified by yeast genomic sequencing 
(41% identical overall and 71% identical in 
the conserved region) (Fig. 2C). Mutations 
in many of these genes, including YBR1441 
(24), cause cell cycle arrest at the G, to S 
transition or in S phase. 

O n  the basis of this homology, disrup- 
tion of PRL might be expected to cause a 

visible phenotype, and plants heterozygous 
for the insertion were found to be semi- 
sterile (Fig. 3A). Each Arabidopsis ovule 
supports a single haploid megagametophyte 
(the embryo sac), which is derived from a 
haploid product of meiosis by three rounds 
of nuclear division. Semi-sterile prl/+ sil- 
iques were found to have some mutant em- 
bryo sacs arrested at various stages, suggest- 
ing that the pr1::DsG insertion resulted in 
reduced megagametophyte viability (25). 
To confirm this, we carried out reciprocal 
crosses to wild-type plants to examine 
transmission of the nptll gene, carried by 
the DsG element. Relative to the wild-type 
locus (loo%), 95% transmission of kanamy- 
cin resistance was observed through the 
male and 50% through the female (Table 
I), indicating that the mutation resulted in 
reduced megagametophyte viability. All ka- 
namycin-resistant plants (n = 93), includ- 
ing those derived from prl female parents, 
were semi-sterile, indicating that the muta- 
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the end of the DsG element and are areceded bv an F 7 E 4 3 0  

intron from the Arabidopsis GPAl genh (37). The busA PRL 4 4 8  

gene begins 343 nt from the end of DsG. Nested primers YBR'"l C E 4 6  
532 
4 8 8  

3 and 4 (181, used for RACE-PCR, are at positions 100 to 
PWL 123 and 149 to 176, respectively, from'the gusA ATG. ,,,,,, 

gusA is 6-glucuronidase, and nptll is neomycin phospho- i K 4 6  

rransferase, whlch confers resistance to kanamycln. (6) 
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tsolated from roots (lane 1) and ~nflorescences (lane 2) of 
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acid sequences of the PRL, YBR1441, and CDC46 proteins (33). Gaps in the PRL cDNA sequence is L39954. 
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tion was fully penetrant but leaky. No ho- 
mozygous F3 plants were found in 121 ka- 
namycin-resistant plants examined. How- 
ever, each heterozygous silique contained a 
few aborted seed (Fig. 3, C and D) that 
stained for GUS activity (1 6). Thus, trans- 
mission of the semi-sterility mutation 
through the female gametophyte led to 
variable lethality in homozygous embryos. 

To demonstrate that the DsG insertion 
was responsible for semi-sterility, we gener- 
ated revertants by DsG excision. Ac/- prl/+ 
F, plants were semi-sterile, but had occasion- 
al fully fertile siliques, indicating that the 
phenotype was unstable in the presence of 
Ac (1 6). One plant contained a large sector 
encompassing most of the primary bolt. 
Southern (DNA) analysis revealed that the 
DsG element had excised in fully fertile 
plants derived from the revertant siliques in 
this sector, whereas heterozygous siblings de- 

Fig. 3. Semi-sterile phenotype in prl heterozy- 
gotes. (A) Maturing silique dissected to expose 
developing seeds, unfertilized ovules (white ar- 
rowhead), and seed containing aborted embryos 
(black arrowhead). Wild-type embryo (6) and de- 
fective embryos (C and D) from such asilique. The 
size bars in (B) through (D) represent 0.1 mm. 

Fig. 4. Phenotypic re- A 

rived from semi-sterile siliques retained the 
DsG element (Fig. 4A). However, 8 out of 
62 plants derived from revertant siliques 
were semi-sterile, indicating that the rever- 
tant sector did not encomDass the entire 
flower (26). Genomic sequences were ampli- 
fied from wild-type, prl/+, and revertant 
plants (27), and sequencing revealed that 
the DsG element was inserted in an 85- 
base pair (bp) intron and created an 8-bp 
target site duplication (12). A 6-bp foot- 
print remained after excision of the ele- 
ment (Fig. 4B). 

Gametophyte lethality is leaky in prolif- 
era. This could be because the element is 
inserted in an intron close to the 3' end of 
the gene, so that the truncated fusion pro- 
tein retains some activity. Alternatively, 
there may be related genes that can partial- 
ly substitute for PRL, particularly in the 
male gametophyte, which is unaffected by 
the mutation. Additional genomic DNA - 

fragments were detected by low-stringency 
hybridization, supporting this idea (16). In 
contrast, a similar mutation in Arabubpsis, 

Table 1. DsG transmission in pfl+ heterozy- 
gotes. Outcrosses with pr//+ heterozygotes either 
as males or females to wild-type plants were per- 
formed, and the prl/+ parents were also selfed. 
The DsG element carries the nptll gene, so that 
kanamycin resistance was used to follow the DsG 
element. Data from 40 crosses were pooled with 
both Landsberg and Columbia ecotypes as the 
wild-type parent. Reduced female transmission 
was significant at P < 0.01 %. All Kan-r progeny 
tested were also semi-sterile. 

Female Male Kan-r Kan-s 

prl/+ +/+ 205 407 
+/+ prV+ 425 445 
prl/+ selfed 2705 201 0 

Ac (29) (lanes 2 and 6); 
and pooled seedlings from fully fertile revertant B 
siliques A (lanes 3 a i d  7) and B (lanes 4 and 8). 

50 m 
I I 

Genomic DNA was digested with Eco RI (lanes 1 f l  GATC- [ Dsl -GAGA 

to 4) or Xba I (lanes 5 to 8), and Southern (DNA) PRL GATCAcTcmw- - - - - - -GAGA 

analvsis was oerforrned with PRL cDNA (left oan- fRL ~ ~ T C ~  - - - G-GAGA . -  ,-- 
el) &d gusA brobes (right panel). A fragment cor- revertant 

responding to the DsG element insertion was detected in heterozygotes (lanes 2 and 6). but not in 
wild-type (lanes 1 and 5) or revertant (lanes 3, 4, 7, and 8) plants (arrows). No DsG fragments were 
detected in DNA from revertant plants, i n d i t i n g  that the DsG element excised, and dtd not reinsert. 
Molecular size markers are in kilobase pairs. (B) DNA sequences flanking the DsG element insertion in prl. 
The 8-bp sequence in boldface is the target site duplication. Numbers refer to nucleotide positions in the 
intron, which lies between amino acids 684 and 685 in the open reading frame shown in Fg. 2C. A 6-bp 
footprint remains after DsG excision. The underlined G is not derived from the target site duplication. 

gametophyte factor1 (3), causes female ga- 
metophyte lethality and also affects trans- 
mission through the male. 

MCM2-3-5 proteins are nuclear-local- 
ized in veast and are reouired for the initi- 
ation of DNA replication from particular 
replication origins. They have been pro- 
posed to act as the replication licensing 
factor (22), which regulates initiation of 
DNA replication during the cell cycle (28). 
Consistent with a role in DNA replication, 
PRL is required very early, during megaga- 
metophyte development, but also has a 
more general role in dividing cells through- 
out the plant that could only have been 
identified through the use of gene traps. 
The staining pattern we observed could be 
used to screen for other genes involved in 
cell division and may aid in the analysis of 
morphogenetic mutants by defining zones 
of active DNA replication. 
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Role of the Chaperone Protein Hspl04 in 
Propagation of the yeast Prion-Like Factor [psi+] 

Yury 0. Chernoff,*l-Susan L. Lindquist, Bun-ichiro Ono,i 
Sergei G. Inge-Vechtomov, Susan W. Liebman 

The yeast non-Mendelian factor bs i f ]  has been suggested to be a self-modified protein 
analogous to mammalian prions. Here it is reported that an intermediate amount of the 
chaperone protein Hspl04 was required for the propagation of the bsi t ]  factor. Over- 
production or inactivation of Hspl04 caused the loss of bsi f ] .  These results suggest that 
chaperone proteins play a role in prion-like phenomena, and that a certain level of 
chaperone expression can cure cells of prions without affecting viability. This may lead 
to antiprion treatments that involve the alteration of chaperone amounts or activity. 

Certain ma~nrnalian neurodeeenerati.i~e " 

d~seases, such as sheep scrape, human 
Creutzfeldt-Tacob d~sease, and bov~ne suon- 
giform encephalopathy, are widely believed 
to be caused by proteins in an unusual 
protease-resistant conformation, called pri- 
ons (1) .  Evidence indicates that transmis- 
sion of the prion diseases does not require 
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any nucleic acid. Rather, infection depends 
on the prion's ability to convert unmodified 
nonprion protein, encoded by the same host 
gene, into the prion conformation. It has 
been noted that the yeast factors [LrRE3] 
(2) and [psif] (2,  3) closely resemble prions. 

The [psi+] factor was first described as a 
non-Mendelian element, found in some but 
not other laboratory strains of Saccharorny- 
ces cereuisiae, that increases the efficiency of 
certain nonsense suppressor transfer RNAs 
[for a review, see (4)]. Later it was sho~vn 
that [psif] causes weak nonsense suppres- 
sion by itself (4-6). No extrachromosornal 
DNA or RNA elements have been found to 
be responsible for [psif] (4). Moreover, 
[psi+] can be "cured" (lost from the cell) by 
stress-inducing agents (4). Several pieces of 
evidence strongly suggest ( 2 ,  3) that [psi+] 
is a prion-like form of the EF-la-related 
protein Sup35. (i) Mutations in the SLrP35 
gene cause omnipotent suppression, just as 
[psi+] does (7). (ii) Overexpression of 
SLrP35 induces [psif] (8), just as overex- 
pression of the prion protein gene (PrP) in 
transgenic mice induces the prion disease 
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