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A Neuropeptide Gene Defined by the Drosophila 
Memory Mu tan t amnesiac 

Mel B. Feany*? and William G. Quinn 

Mutations in genes required for associative learning and memory in Drosophila exist, but 
isolation of the genes has been difficult because most are defined by a single, chemically 
induced allele. Here, a simplified genetic screen was used to identify candidate genes 
involved in learning and memory. Second site suppressors of the dunce (dnc) female 
sterility phenotype were isolated with the use of transposon mutagenesis. One suppressor 
mutation that was recovered mapped in the amnesiac (amn) gene. Cloning of the locus 
revealed that amn encodes a previously uncharacterized neuropeptide gene. Thus, with 
the cloning of amn, specific neuropeptides are implicated in the memory process. 

T w o  genes essential for learning and Inem- 
ory in Drosophila have been cloned and 
sequenced. The dnc gene encodes a aden- 
osine 3',5'-monophosphate (CAMP)-spe- 
cific phosphodiesterase (1 ). A second muta- 
tion, rutabaga (rut), encodes a Ca2+- and 
calmodulin-sensitive adenylate cyclase (2, 
3). Both genes are components of the ad- 
enylate cyclase second messenger pathway, 
and the cloning of these two loci relied on 
knowledge of the biochemical activities of 
the gene products. However, full exploita- 
tion of the genetic potential to dissect learn- 
ing and memory lnechanis~ns requires a di- 
rect progression from the genetic mutation 
to the isolation of the gene. Such an ap- 
proach has been key in other areas of Dro- 
sophila research, but application of the same 
techniques to learning mutants is hampered 
by the labor intensive nature of behavioral 

testing. For example, mutagenesis by the 
lnobilization of transposable elements or by 
x-rays greatly facilitates cloning of the dis- 
rupted genes. Unfortunately, the lower mu- 
tagenesis efficiencies when compared with 
chemical mutagens, combined with the dif- 
ficulty of direct behavioral screening, make 
these traditional approaches problematic. 

Table 1. Feriility of wild-type and mutant flies. 
Single female flies of the indicated genotypes 
were placed individually in culture vials, and the 
percentage of females laying eggs and the aver- 
age number of progeny produced after 18 days 
were recorded (n refers to the number of female 
flies assayed). The dncm" allele was used. 

Females Avg. no. of 
Genotype n laying progeny 2 

eggs (%) SEM 

W~ld type 50 98 >40 
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To circumvent these difficulties a second 
site suppressor screen was used to isolate 
Drosophila learning and memory mutants. 
Mutations in rut alleles suppress both the 
female-specific sterility and the behavioral 
defects of dnc (2, 4 ,  5). Therefore, it seemed 
possible that additional learning mutants 
could be isolated as suppressors of dnc female 
sterility. In such a screen, only the progeny 
of rare fertile females are candidates for in- 
teracting mutants, and the isolation of such 
flies reauires less time and effort than the 
traditional approach of creating multiple iso- 
genic mutagenbed stocks and testing the 
behavior of each of them individually. The 
mutagenesis protocol describeil in (6) was 
used to screen for doininant P element- 
induced X chro~nosoinal lnutations that sup- 
pressed dnc sterility. 

One X chrolnosolnal line, P( 19A), that 
suppressed dnc sterility contained a P ele- 
ment inserted in region 19A on the X chro- 
mosome, as determined bv in  sit^^ 11vbridi:a- 
tion to polytene chromosomes (7). The 
memory mutant amn, whose ornnarv effect is 
on me~Aory in the first few hours after asso- 
ciative training (8, 9),'was mapped by genet- 
ic recombination to a region proximal to 
forked and near carnation (8). Deficiency 
chromosome mapping refined the 1ocali:a- 
tion of amn to the 19A1-2 region of the X 
chromosome (10). The correspondence of 
the position of amn with the new P element 
mutation suggested that this P element may 
have inserted into the arnn gene. The auto- 
somes of the insertion strain were reolaced 
w ~ t h  autosomes from the standard w~ld-type 
Canton-S stock to mlnlmlze anr effects of 
other mutations iiltroduced during the 
screen. The strain was tested for ~ossible 
allelism to the original amn mutation in 
three ways: by assaying the ability of the 
original amn mutation to suppress dnc steril- 
ity, by characterizing the behavior of the 
strain having a P element inserted at 19A, 
and by carrying out co~nplementation tests 
with the various phenotypes. 

Homozygous dnc females laid very few 
eggs, none of which survived to adulthood 
(Table 1).  Females carrying both the dnc 
mutation and P(19A) were weaklv fertile. 
The effect was dominant, because a single 
copy of P(19A) also suppressed the sterility. 
To test the ability of the original amn mu- 
tation to suppress dnc sterility, Lve con- 
structed a recombinant chromosome with 
both the dnc and amn mutations (1  1 ). The 
original arnn allele also relieved dnc sterility 
(Table 1).  Like the P element insert~on, 
amn acted dominantly, as shown by suppres- 
sion of dnc sterility by one copy of the amn 
chromosome (Table 1 ). 

The 19A suppressor also affected behav- 
ior. Flies hornozygous for P(19A) had mem- 
ory intermediate between wild-type and amn 
flies (Figs. 1 and 2)  (1  2) .  The P(19A) allele 

failed to co~nplement the memory defect of 
amn. Flies heteroiygous for P(19A) and amn 
had memory as poor as homoiygous amn 
flies. Like amn, the memory defect of P(19A) 
was recessive (Fig. 2).  The poor memory of 
P(19A)lcmln flies was not the result of defi- 
cient initial learning, because the flies dis- 
played immediate learning indistinguishable 
from amn or wild-type flies (Fig. 2). Memory 
deficits were also unlikely to result from sen- 
sory abnormalities given intact sensitivities 
to odors and electric shock in ~ I I I  (8), and 
the good immediate learning of the P ele- 
ment mutant. Thus, the P(19A) flies ap- 
peared to carry a hypomotphic (partial func- 
tion) amn mutation. 

P elements often create hypomotphic 
mutations by inserting into regulatory re- 
gions and altering the levels of gene expres- 
sion. Reinobilization of such an element and 
selection for excision events that also re- 
move surrouilding DNA can produce severe 
alleles. To this end, transposase was reintro- 
duced into the germ line of P(19A) flies. 
Isogenic X chroinosome lines were created 
from approximately 200 progeny from indi- 
vidual dysgenic flies (1 3). About 10% of the 
lines displayed alterations of the 19A region 
as indicated by Southern (DNA) blot anal- 
ysis, and an allele that disrupted surrounding 
DNA, P( 19A)"", was selected for behavioral 
and molecular analysis. The P(19AJEx flies 
learned as well as the amn flies, but their 
memory was severely curtailed (Figs. 1 and 
2). The defect failed to complement amn and 

4 1  - Wild type 1 

1 rnin 1 hour 

Time 

Fig. 1. Learnng and I-hour memory in homozy- 
gous normal and mutant fiies. Flies of the indcat- 
ed genotype were traned with the use of the as- 
sociatlve, negatively reinforced class~cal condi- 
tioning paradigm of Tuly and Qunn (12) and test- 
ed immediately or after 1 hour. Before training, 
autosomes from dysgenesls-derived mutant 
strains were replaced wlth autosomes from the 
Canton-S wild-type strain. An asterisk (*) indicates 
Iearnng or memory values significantly dfferent 
from the w d  type [analysis of varance (ANOVA), P 
< 0.01, one-way analysls of variance with supple- 
mentary Newman-Keus test]. Error bars indicate 
standard errors of the mean (SEMs) for seven to 
nine determnations per pont. 

P(19A), the original insertion strain, but was 
fully recessive (Fig. 2). These results suggest 
that the excision chromosome carried a se- 
vere amn allele. 

Genoinic DNA from P(19A) flies was 
cloned, and DNA from the region sur- 
rounding the P element insertion was ana- 
1y:ed to determine the molecular basis for 
the behavioral phenotypes and to identify 
the amn transcription unit (Fig. 3A). In the 
P(l9A) strain there were two closely spaced 
P elements in the 19A region (14). When 
transposase was reintroiluced into the germ 
line of P(19A) flies, all of the resulting 
lesions were complex local rearrangements 
(13). None of the lines precisely removed 
one or both of the elements, and none 
contained large flanking deletions. Molec- 
ular cloning and seq~~encing of the 19A 
region from the P(19A)Ex strain indicated 
that two genetic rearrangement events oc- 
curred. First, the DNA between the two 
elements was inverted, and second, a dele- 
tion removed approximately SO0 base pairs 
(bp) of genomic DNA and most of the 
right-most P element (Fig. 3A). 

Drosophilacomplernentary DNA (cDNA) 
libraries were screened with genoinic DNA 
spanning 10 kb on either side of the P ele- 
ments to identify the transcription unit or 
units that were disn~pted by the P element 
lesions. After extensive screening of cDNA 
libraries representing multiple tiss~~es and de- 
velopmental stages, two overlapping 3.6-kb 
cDNAs were recovered from size-selected 
adult head cDNA libraries (15). Sequence 
analysis revealed a s~ngle region of good Dro- 

Fig. 2. One-hour memory In normal and mutant 
fes.  Unless spec~fcaly lndcated In the genotype, 
fles were homozygous Flles were traned as de- 
scrbed (12) and tested 1 hour after tralnlng An 
asterlsk j") lndlcates memory values slgnlflcantly 
dlfferent from the wild type (ANOVA, P < 0 01, 
one-way analyss of varlance wlth supplementary 
Newman-Keuls test) Error bars lndcate SEMs for 
seven to nne determlnatlons per pont 
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sophilil codon usage and an open reading 
frame that began with a CUG rather than an 
AUG initiation codon. Non-AUG start 
codons are unusual, but at least two other 
nervous system-specific examples are known 
in Drosophila (16), and several instances 
have been identified in mammalian systems 
as well (1  7). These results suggest that CUG 
is used to initiate synthesis of the amn gene 
product, but they do not rule out the possi- 
bility of alternatively spliced transcripts not 
recovered in cDNA screens. The cDNAs for 
such variants may be difficult to identify 
because they were not detected even with 
extensive screenmg (15). 

A perfect polyadenylation signal oc- 
curreci exactly 10 bp upstream of the poly- 
adenylate [poly(A)] tail. The open reading 
frame had an organization characteristic of 
neuropeptide precursor genes (Fig. 3B). An 
initial stretch of hydrophobic residues could 
act as a signal peptide. A potential signal 
cleavage site that conforms to the consen- 
sus (18) occurred after Ala2'. There were 
several palrs of basic residues that could be 
cleavage sites. If Arg-Arg and Lys-Arg pairs 
serve as cleavage ~ites,  then three potential 
peptides of 24, 32, and 56 alnino acids 
would be predicted. The last putative Arg- 
Arg cleavage site \{;as preceded by a glycine 

that forms the consensus signal for peptide 
COOH-terminal amidation, Many peptides 
are amidated, and this modification is often 
required for biological activity ( 1  9). 

Sequence comparison of the cDNAs and 
genornic DNA from the P element mutant 
P(19A) showed that the smaller (600-bp) P 
element inserted directly into the third pu- 
tative neuropeptide in the open reading 
frame (Fig. 3A). The second, larger P ele- 
ment inserted into the downstream 3' un- 
translated region. Genetic analysis indicat- 
ed that P(19A) is a hypomorphic allele that 
has residual gene activity (Figs. 1 and 2) .  
Several models can explain the hypoinor- 
phic nature of P(19A); these include the 
possibility that alternative mRNA splicing 
occurs around the P element or elements, or 
that a fusion protein is produced that ter- 
minates in the first P element. 

The original amn mutation was created 
by ethylmethane sulfonate lnutagenesis of a 
control strain isogenic for the X chromo- 
some and is a genetic null in memory assays 
(9). To characterize this mutation inolecu- 
larly, we amplified the open reading frame 
from the isogenic control wild-type strain 
(Canton-S-derived) and from amn genom- 
ic DNA \{;it11 the polymerase chain reaction 
(PCR) (20). Four clones were sequenced 

from each genotype; these included two 
independent clones from two separate PCR 
reactions for each. The genomic DNA se- 
quence frorn the amn mutant contains a 
single base deletion in the middle of the 

u 

predicted signal pepride. This change alters 
the reading frame and creates a stor, codon - 
at amino acid 28 of the amn predicted pro- 
tein. No potential peptides can be synthe- 
sized frorn the amn chromosome. These re- 
sults are consistent with the amn null uhe- 
notype and support the behavioral genetic 
evidence that identifies the putative pep- 
tide-encoding transcription unit as the amn 
gene. 

Two of the potential peptides had ho- 
mology to the genes that encode mamma- 
lian adenylate cyclase activating peptide 
(PACAP) (21 ) and grolvth hormone releas- 
ing hormone (GHRH). The first predicted 
amn peptide vvas homologous to mature 
GHRH and to a repion of the PACAP - 
precursor protein that shares homology 
with GHRH (Fig. 4). The 38-amino acid 
mature PACAP neuropeptide was isolated 
from hypothalamic tissue on the basis of its 
ability to stimulate adenylate cyclase from 
anterior pituitary. This peptide is homolo- 
gous to the second predicted amn peptide. 
The biochemical activities of the amn pep- 

amnesiac 27 .la1 Tjal s e r  ~ l y  s e r  ~ y s  ~ l y  S e r  A l a  A l a  L e u  l a  L e u  

: I I 
preplo-PACAP 80 ~ l u  A r g  s p  '7al A l a  ~ 1 s  ~ 1 y  I l e  L e u  ~ s p  ~ y s  A l a  Tjr 

I : I I 
GHRH 1 T y r  A l a  A s p  A l a  I l e  P h e  T h r  A s n  s e r  T y r  

amnesiac C ~ S  r g  G l n   he G ~ U  G l r  L e u  S e r  A l a  S e r  A r g  A r g  51 
I l l 1  I I 

prepr0-PACAP k.rg ~ y s  'la1 ~ e u  k.sp G l n  L e u  S e r  A l a  r g  A r g  103 

B I l l 1  I l l 1  I 
GHRH r g  L y s  Tjal L e u  G l y  G l r  L e u  S e r  l a  k.rg L y s  21 

:.let L e u  T r p  Arg C.js T i r  A l a  Tyr r y r  C.js P h e  T n r  L e u  P h e  P h e  L e u  16 

L e u  E i e  A r g  A l a  S e r  A l a  L e u  e r g  V a l  V a l  S e r  G l y  S e r  L y s  32 - - - - - - - - - 
G l y  S e r  A l a  A l a  L e u  A l a  L e u  C y s  e r g  G l n  P t e  G l u  G l n  L e u  S e r  A l l  48 

s e r -~ lu  A r g  A l a  S l u  G l u  C y s  A r g  T h r  T t r  G l n  L e u  A r g  T y r  64 

His T y r  31s A r g  k.sn S l y  A l a  G l n  S e r  A r g  S e r  L e u  C y s  l a  l a  Tjal 80 

S e r  Tyr I l e  E r c  k.rg P r o  A s n  E i e  S e r  C y s  E h e  96 

S e r  L e u  ' l a 1  P t e  P r o  Tjal S l y  S l n  A r g  P t e  A l a  A l a  l a  r g  ~ t r  A r g  112 

Eke  S l y  P r o  T t r  L e u  V a l  h l a  S e r  T r p  E r a  L e u  C y s  A s n  A s p  S e r  S l u  128 

T t r  L y s  V a l  L e u  T t r  L y s  T r p  P r o  S e r  C y s  S e r  L e u  I l e  S l y  A r g  A r g  144 

S e r  V a l  P r o  A r g  G l y  G l n  P r o  L y s  E k e  S e r  A r g  G l u  A s n  P r o  A r g  A l a  160 

L e u  S e r  P r c  S e r  L e u  L e a  ~ l y  G ~ U  Mec P r g  170 

Fig. 3 (left) Molecular clonlng, cDNA   so at on, and sequence anayss of 
the amn gene (A) Two P elements Inserted 1 8 kb apart In the 19A regon 
of the X chromosome (14) Genomlc DNA IS ndlcated by the black and 
strlped boxes Apparently two gene rearrangng events occurred In thls 
straln ( I )  The DNA between the two elements was Inverted The strlped box 
shows Inverted materla ( 1 1 )  A deleton removed approxmately 800 bp of 
genomc DNA and most of the rlght-most P element Parentheses Include 
the extent of the deleton P element lnsertlons are shown as trlanges and 
the arrows ndcate the dlrectlon of P element transcrptlon Open boxes 

amnesiac 55 G l u  G l u  C y s  A r g  T t r  T t r  G l n  L e u  A r g  T y r  Els T g r  

I I 
PACAP-38 2 s e r  k .sp G 1 y  I l e  2i-e T t r  A s p  S e r  T y r  S e r  A r g  Pjr 

amnesiac 3is k.rg A s r  G ~ Y  A l a  G l r  s e r  A r g  S e r  L e u  ~ y s  A l a  . . .  . . .  I I I 
PACAP-38 A r g  L y s  G l r  :4e: A l a  V a l  L y s  L y s  T y r  L e u  A l a  

amnesiac A l a  V a l  L e u  c y s  c y s  L ~ S  h r g  85 
I l l  I I 

PACAP-38 ; l a  v a l  ~ e u  G l y  ~ y s  r g  30 

denote the approximate position of the two 3.6-kb cDNAs isolated, one of 
whch has a poy(A) tall. (B) Proteln sequence of the amn+ open readlng 
frame. The predicted sgnal sequence IS dashed underlned, putatve dba- 
sic cleavage sites are boxed, and a COOH-termna amdaton signal is 
double underlned, The trangle Indicates the Peement Inserton. Fig. 4 
(right). Homology between the predicted amn peptldes and the PACAP 
precursor proteln (prepro-PACAP), the mature PACAP (PACAP-38), and 
G H R H .  Vertlcal lines indicate ldentca residues; colons ldentlfy slmlar am- 
no acids. 
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tides are unknown, hut both the  genetlc 
and rnolecular evidence suggest that the  
peptides act through adenylate cyclase to 
increase the concentration of CAMP. T h e  
second site suppressor screen that produced 
the P elernent amn allele selected for muta- 
tlons that suppressed dnc female sterility, 
which is caused bv elevated CAMP concen- 
trations In phos~l~odlesterase-deficient fe- 
male flies ( 1 ,  4). Suppressor lnutatlons 
should affect genes that,  like the  rut adeny- 
late cyclase, normally act to  increase CAMP 
concentrations ( 2 ,  3). 

Identification of the Drosophiln memory 
lnutant amnesiac as a neuropeptide-encoding 
gene implicates the putative peptide or pep- 
tides in  neuronal plasticity. Many mammali- 
a n  peptides have ~ntriguing patterns of ex- 
pression in  the central nervous system, well- 
characterized receptors, and docu~nented ef- 
fects o n  standard second messenger systems. 
Nevertheless, most of these peptides have no  
defined physiological or behavioral roles. 
Mutations, with functional information de- 
rived from their phenotypes, address these 
issues directly. Our  present finding that a 
specific behavioral defect results from a mu- 
tation in a probable neuropeptide gene is a 
first step toward dissecting the f~~nc t iona l  
role of neuropeptides in the brain. T h e  in- 
ference that a specific peptide may be in- 
\-olved in extending memory beyond initial 
response times of second messenger systems 
activated bv classical neurotransmitters is 
potentially of general importance. Whether 
~na~nlnal ian ho~nologs of the amn gene prod- 
ucts play a similar role in their hosts is a n  
open, inviting question ( 2 2 ) .  
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Control of Proton Sensitivity of the NMDA 
Receptor by RNA Splicing and Polyamines 

Stephen F. Traynelis,* Melissa Hartley, Stephen F. Heinemann 

The function of the N-methyl-D-aspartate (NMDA)-preferring glutamate receptor can be 
regulated by extracellular pH, a process that may be important during ischemia in the brain 
or during seizures. Protons inhibit NMDA receptor function by 50 percent at pH 7.3 through 
interactions with the N R I  subunit, and both polyamines and N R I  exon 5 potentiate 
receptor function through relief of the tonic proton inhibition present at physiological pH. 
A single amino acid (lysine 21 1) was identified that mediates the effects of exon 5 in the 
rat brain. Electroneutral substitutions at this position restored pH sensitivity and, conse- 
quently, polyamine relief of tonic inhibition. This effect, together with the structural simi- 
larities between polyamines and the surface loop encoded by exon 5, suggest that exon 
5 may act as a tethered pH-sensitive constitutive modulator of NMDA receptor function. 

NMDA recentors serve lnanv functions 111 

the  d e ~ e l o ~ l ~ ; ~  and adult cektral nervous 
svsteln ( 1 ) .  However, actlr7atlon of these re- , , 

ceptors also can contribute to the pathophys- 
iology of epilepsy (2)  and stroke (3). O n e  
way the brain protects itself from the potell- 
tiallv harmful actions of N M D A  recentors is 
to tightly regulate their filnction. indeed, 

NMDA receptors are controlled by Inany 
elldogeno~ls substances as well as second 
messenger systems (1 ). Of the effects of en- 
dogenous ions o n  N M D A  receptor f ~ ~ n c t i o n ,  
inhibition by extracellular protons (4, 5 )  is 
particularly interesting for three reasons. 
First, ion-selective electrodes have provided 
inforlnation that describes changes in extra- 
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cellular pH d~lring normal brain function 
(6). For example, the acidic and alkaline 
transients associated with synaptic transmis- 
sion are sufficient to alter s v n a ~ t i c  N M D A  , A 

receptor activation (6). Second, the acidifi- 
cation of the interstitial spaces that occurs 
during both seizures and ischemia (7) will 
inhibit N M D A  receptors. Beca~lse N M D A  
recentor activation is critical to both seizure 
development and stroke-induced neuronal 
damage, receptor inhibition by falling pH 
should serve as negative feedback (5 ,  8). 
Third, the  sensitivitv of N M D A  receDtors to 
physiological concentrations of protons sug- 
gests that N M D A  receptors are tonically 
inhibited at physiological p H  (5).  

W e  studied the proton sensitivity of re- 
combinant rat N M D A  receptors expressed 
in Xenopus lnevis oocytes (9) and in HEK 293 
cells (10). Similar to native N M D A  recep- 
tors (5) ,  rat h o ~ n o ~ n e r i c  NR1 (1 1 )  function is 
strongly inhibited by physiological concen- 
trations of protons (Table  1) .  This observa- 
tion suooests that the NR1 subunit contains "- 
molecular entities that r eg~~la te  receptor 
function in a pH-sensitive manner. 

A t  least three exons (Fig. 1 A )  can be 

Fig. 1. Control of NMDA receptor proton lnhlbtlon A NRI alternat~vely spl~ced exons 
by NRl exon 5 (A) NRl IS constructed from 22 I 2 4 5 6 7 8 9 10 11 12 13 1415 16 17 18 1920  2122r r 

exons four of wh~ch can be alternat~vely sp~ced  I l l  I I l l  I I t  t 1 
3' 

(bold) to form nne soforms (1 1 21). stop codons 
are shown as arrowheads The th~rd exon, wh~ch 162 191 -b 211 232 

contans a stop codon IS not shown Many of the 1 1 1 1  i d 2  e j  a c a i - l e r l l  e l  S ~ S K K # U Q ~ ~ I ~ ~ L S V ~ U X ~ : G ? X ~  l a  a p ~ r i i ,  a t  n +++ - - - ++ + 
amno ac~ds  encoded by exon 5 (uppercase let- I F - (  7 -- -- 4 !3 I-------(- 
tersi Dossess s ~ d e  chans that conta~n a molecular 
orb~tal systems (-) Hel~x and P sheet reglons mmmmm'- 

---u-7---- -llm-- 

shown were predcted (12) accordng to Rost and ~ ~ ~ ~ l , , y  
Sander, accuracy was <7Z06 f t h s  reglon of NRI 
behaved as a soluble prote~n. Other algor~thms 
pred~ct hel~ces at Alaq74 to SerqSg, Valzz5 to Arg23S 
(Chou and Fasman)  HIS'^' to Lysig3 and Valzz5 B C D 
to Leu2"' (Garn~er et a / )  w~th an est~mated accu- NRI - exon 5 

racy of about 50 to 5556 P sheets were predlct- 
ed at Lys"" to Phe21g (Chou and Fasman) and 
Glu213 to PheaE (Garner et a / )  Nearly dentcal 
results were obtaned for NRI - exon 5 The 
surface probab~l~ty Index was calculated from 
the amno a c ~ d  surface probab~l~t~es (12) Down- 
ward denotes the lncreaslng l~kel~hood that res- 
 dues are access~ble to water (B) Current re- 
sponses at -60 mV In Ba2+ to glutamate + 7.6 6.8 0 01 

glyc~ne (pH 6 8 and pH 7 6) are shown from 50 s pH H+ (pM) activity 

oocytes Injected w~th NRI - exon 5 and NRI 
- exon 5 Scale bars are 10 nAand 50 s (C) Mean agon~st-nduced responses phys~olog~cal pH (7 3) and error bars are SEM (whenever larger than the sym- 
were determ~ned for NRI 5 exon 5 dentcal quantt~es of spl~ce var~ant cRNA bol) (D) The compos~te Hf lnhlbt~on cuwes for NRI 2 exon 5 are shown as a 
(from four preparatons) were Injected nto oocytes parwse (n = 19 cells per percent of the f~tted maxmum (see Table 1 for C,, values) The phys~olog~cal 
po~nt the aster~sk denotes P < 0 05) For all f~gures veri~cal arrows mark range IS supermposed as a box Data are from 77 oocytes 

SCIEhCE VOL 26s 1 2  blAY 1995 873 




