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A Neuropeptide Gene Defined by the Drosophila
Memory Mutant amnesiac

Mel B. Feany*t and William G. Quinn

Mutations in genes required for associative learning and memory in Drosophila exist, but
isolation of the genes has been difficult because most are defined by a single, chemically
induced allele. Here, a simplified genetic screen was used to identify candidate genes
involved in learning and memory. Second site suppressors of the dunce (dnc) female
sterility phenotype were isolated with the use of transposon mutagenesis. One suppressor
mutation that was recovered mapped in the amnesiac (amn) gene. Cloning of the locus
revealed that amn encodes a previously uncharacterized neuropeptide gene. Thus, with
the cloning of amn, specific neuropeptides are implicated in the memory process.

Two genes essential for learning and mem-
ory in Drosophila have been cloned and
sequenced. The dnc gene encodes a aden-
osine 3’,5’-monophosphate (cAMP)-spe-
cific phosphodiesterase (1). A second muta-
tion, rutabaga (rut), encodes a Ca?*- and
calmodulin-sensitive adenylate cyclase (2,
3). Both genes are components of the ad-
enylate cyclase second messenger pathway,
and the cloning of these two loci relied on
knowledge of the biochemical activities of
the gene products. However, full exploita-
tion of the genetic potential to dissect learn-
ing and memory mechanisms requires a di-

_ rect progression from the genetic mutation

to the isolation of the gene. Such an ap-
proach has been key in other areas of Dro-
sophila research, but application of the same
techniques to learning mutants is hampered
by the labor intensive nature of behavioral
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testing. For example, mutagenesis by the
mobilization of transposable elements or by
x-rays greatly facilitates cloning of the dis-
rupted genes. Unfortunately, the lower mu-
tagenesis efficiencies when compared with
chemical mutagens, combined with the dif-
ficulty of direct behavioral screening, make
these traditional approaches problematic.

Table 1. Fertility of wild-type and mutant flies.
Single female flies of the indicated genotypes
were placed individually in culture vials, and the
percentage of females laying eggs and the aver-
age number of progeny produced after 18 days
were recorded (n refers to the number of female
flies assayed). The dnc™’" allele was used.

Females  Avg. no. of
Genotype n laying progeny =
eggs (%) SEM
Wild type 50 98 >40
dnc/dnc 84 14 0
dnc P(19A)/dnc 70 57 1.7+05
P(19A)
dnc P(19A)/dnc 50 74 23 +06
dnc amn/dnc 290 66 39=x1.0
amn
dnc amn/dnc 37 73 19+07
869



To circumvent these difficulties a second
site suppressor screen was used to isolate
Drosophila learning and memory mutants.
Mutations in rut alleles suppress both the
female-specific sterility and the behavioral
defects of dnc (2, 4, 5). Therefore, it seemed
possible that additional learning mutants
could be isolated as suppressors of dnc female
sterility. In such a screen, only the progeny
of rare fertile females are candidates for in-
teracting mutants, and the isolation of such
flies requires less time and effort than the
traditional approach of creating multiple iso-
genic mutagenized stocks and testing the
behavior of each of them individually. The
mutagenesis protocol described in (6) was
used to screen for dominant P element—
induced X chromosomal mutations that sup-
pressed dnc sterility.

One X chromosomal line, P(19A), that
suppressed dnc sterility contained a P ele-
ment inserted in region 19A on the X chro-
mosome, as determined by in situ hybridiza-
tion to polytene chromosomes (7). The
memory mutant amn, whose primary effect is
on memory in the first few hours after asso-
ciative training (8, 9), was mapped by genet-
ic recombination to a region proximal to
forked and near carnation (8). Deficiency
chromosome mapping refined the localiza-
tion of amn to the 19A1-2 region of the X
chromosome (10). The correspondence of
the position of amn with the new P element
mutation suggested that this P element may
have inserted into the amn gene. The auto-
somes of the insertion strain were replaced
with autosomes from the standard wild-type
Canton-S stock to minimize any effects of
other mutations introduced during the
screen. The strain was tested for possible
allelism to the original amn mutation in
three ways: by assaying the ability of the
original amn mutation to suppress dnc steril-
ity, by characterizing the behavior of the
strain having a P element inserted at 19A,
and by carrying out complementation tests
with the various phenotypes.

Homozygous dnc females laid very few
eggs, none of which survived to adulthood
(Table 1). Females carrying both the dnc
mutation and P(19A) were weakly fertile.
The effect was dominant, because a single
copy of P(19A) also suppressed the sterility.
To test the ability of the original amn mu-
tation to suppress dnc sterility, we con-
structed a recombinant chromosome with
both the dnc and amn mutations (11). The
original amn allele also relieved dnc sterility
(Table 1). Like the P element insertion,
amn acted dominantly, as shown by suppres-
sion of dnc sterility by. one copy of the amn
chromosome (Table 1).

The 19A suppressor also affected behav-
ior. Flies homozygous for P(19A) had mem-
ory intermediate between wild-type and amn

flies (Figs. 1 and 2) (12). The P(19A) allele
870

failed to complement the memory defect of
amn. Flies heterozygous for P(19A) and amn
had memory as poor as homozygous amn
flies. Like amn, the memory defect of P(19A)
was recessive (Fig. 2). The poor memory of
P(19A)/amn flies was not the result of defi-
cient initial learning, because the flies dis-
played immediate learning indistinguishable
from amn or wild-type flies (Fig. 2). Memory
deficits were also unlikely to result from sen-
sory abnormalities given intact sensitivities
to odors and electric shock in amn (8), and
the good immediate learning of the P ele-
ment mutant. Thus, the P(19A) flies ap-
peared to carry a hypomorphic (partial func-
tion) amn mutation.

P elements often create hypomorphic
mutations by inserting into regulatory re-
gions and altering the levels of gene expres-
sion. Remobilization of such an element and
selection for excision events that also re-
move surrounding DNA can produce severe
alleles. To this end, transposase was reintro-
duced into the germ line of P(19A) flies.
[sogenic X chromosome lines were created
from approximately 200 progeny from indi-
vidual dysgenic flies (13). About 10% of the
lines displayed alterations of the 19A region
as indicated by Southern (DNA) blot anal-
ysis, and an allele that disrupted surrounding
DNA, P(19A)FX, was selected for behavioral
and molecular analysis. The P(19A)FX flies
learned as well as the amn flies, but their
memory was severely curtailed (Figs. 1 and
2). The defect failed to complement amn and

1 W wild type
] amn
P(19A)
P(19A)EX

Learning index

1 min

Time

Fig. 1. Learning and 1-hour memory in homozy-
gous normal and mutant flies. Flies of the indicat-
ed genotype were trained with the use of the as-
sociative, negatively reinforced classical condi-
tioning paradigm of Tully and Quinn (72) and test-
ed immediately or after 1 hour. Before training,
autosomes from dysgenesis-derived mutant
strains were replaced with autosomes from the
Canton-S wild-type strain. An asterisk (*) indicates
learning or memory values significantly different
from the wild type [analysis of variance (ANOVA), P
< 0.01, one-way analysis of variance with supple-
mentary Newman-Keuls test]. Error bars indicate
standard errors of the mean (SEMs) for seven to
nine determinations per point.
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P(19A), the original insertion strain, but was
fully recessive (Fig. 2). These results suggest
that the excision chromosome carried a se-
vere amn allele.

Genomic DNA from P(19A) flies was
cloned, and DNA fromn the region sur-
rounding the P element insertion was ana-
lyzed to determine the molecular basis for
the behavioral phenotypes and to identify
the amn transcription unit (Fig. 3A). In the
P(19A) strain there were two closely spaced
P elements in the 19A region (14). When
transposase was reintroduced into the germ
line of P(19A) flies, all of the resulting
lesions were complex local rearrangements
(13). None of the lines precisely removed
one or both of the elements, and none
contained large flanking deletions. Molec-
ular cloning and sequencing of the 19A
region from the P(19A)FX strain indicated
that two genetic rearrangement events oc-
curred. First, the DNA between the two
elements was inverted, and second, a dele-
tion removed approximately 800 base pairs
(bp) of genomic DNA and most of the
right-most P element (Fig. 3A).

Drosophilacomplementary DNA (cDNA)
libraries were screened with genomic DNA
spanning 10 kb on either side of the P ele-
ments to identify the transcription unit or
units that were disrupted by the P element
lesions. After extensive screening of cDNA
libraries representing multiple tissues and de-
velopmental stages, two overlapping 3.6-kb
cDNAs were recovered from size-selected
adult head cDNA libraries (15). Sequence

analysis revealed a single region of good Dro-
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Fig. 2. One-hour memory in normal and mutant
flies. Unless specifically indicated in the genotype,
flies were homozygous. Flies were trained as de-
scribed (72) and tested 1 hour after training. An
asterisk (*) indicates memory values significantly
different from the wild type (ANOVA, P < 0.01,
one-way analysis of variance with supplementary
Newman-Keuls test). Error bars indicate SEMs for
seven to nine determinations per point.
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sophila codon usage and an open reading
frame that began with a CUG rather than an
AUG initiation codon. Non-AUG start
codons are unusual, but at least two other
nervous system-specific examples are known
in Drosophila (16), and several instances
have been identified in mammalian systems
as well (17). These results suggest that CUG
is used to initiate synthesis of the amn gene
product, but they do not rule out the possi-
bility of alternatively spliced transcripts not
recovered in cDNA screens. The cDNAs for
such variants may be difficult to identify
because they were not detected even with
extensive screening (15).

A perfect polyadenylation signal oc-
curred exactly 10 bp upstream of the poly-
adenylate [poly(A)] tail. The open reading
frame had an organization characteristic of
neuropeptide precursor genes (Fig. 3B). An
initial stretch of hydrophobic residues could
act as a signal peptide. A potential signal
cleavage site that conforms to the consen-
sus (18) occurred after Ala??. There were
several pairs of basic residues that could be
cleavage sites. If Arg-Arg and Lys-Arg pairs
serve as cleavage sites, then three potential
peptides of 24, 32, and 56 amino acids
would be predicted. The last putative Arg-
Arg cleavage site was preceded by a glycine

that forms the consensus signal for peptide
COOH-terminal amidation. Many peptides
are amidated, and this modification is often
required for biological activity (19).

Sequence comparison of the cDNAs and
genomic DNA from the P element mutant
P(19A) showed that the smaller (600-bp) P
element inserted directly into the third pu-
tative neuropeptide in the open reading
frame (Fig. 3A). The second, larger P ele-
ment inserted into the downstream 3’ un-
translated region. Genetic analysis indicat-
ed that P(19A) is a hypomorphic allele that
has residual gene activity (Figs. 1 and 2).
Several models can explain the hypomor-
phic nature of P(19A); these include the
possibility that alternative mRNA splicing
occurs around the P element or elements, or
that a fusion protein is produced that ter-
minates in the first P element.

The original amn mutation was created
by ethylmethane sulfonate mutagenesis of a
control strain isogenic for the X chromo-
some and is a genetic null in memory assays
(9). To characterize this mutation molecu-
larly, we amplified the open reading frame
from the isogenic control wild-type strain
(Canton-S—derived) and from amn genom-
ic DNA with the polymerase chain reaction
(PCR) (20). Four clones were sequenced

Y = REPORTS

from each genotype; these included two
independent clones from two separate PCR
reactions for each. The genomic DNA se-
quence from the amn mutant contains a
single base deletion in the middle of the
predicted signal peptide. This change alters
the reading frame and creates a stop codon
at amino acid 28 of the amn predicted pro-
tein. No potential peptides can be synthe-
sized from the amn chromosome. These re-
sults are consistent with the amn null phe-
notype and support the behavioral genetic
evidence that identifies the putative pep-
tide-encoding transcription unit as the amn
gene.

Two of the potential peptides had ho-
mology to the genes that encode mamma-
lian adenylate cyclase activating peptide
(PACAP) (21) and growth hormone releas-
ing hormone (GHRH). The first predicted
amn peptide was homologous to mature
GHRH and to a region of the PACAP
precursor protein that shares homology
with GHRH (Fig. 4). The 38-amino acid
mature PACAP neuropeptide was isolated
from hypothalamic tissue on the basis of its
ability to stimulate adenylate cyclase from
anterior pituitary. This peptide is homolo-
gous to the second predicted amn peptide.
The biochemical activities of the amn pep-

A - —— amnesiac 27 val val Ser Gly Ser Lys Gly Ser Ala Ala Leu Ala Leu
: : N : |
prepro-PACAP 80 Glu Arg Asp Val Ala His Gly Ile Leu Asp Lys Ala Tyr
800 b | : |
H3 R1 R1 209 bp : |
| L, | GHRH 1 Tyr Ala Asp Ala Ile Phe Thr Asn Ser Tyr
ALLLALY LA LLY B
amnesiac Cys Arg Gln Phe Glu Gln Leu Ser Ala Ser Arg Arg 51
: : | | | | | |
+
A prepro-PACAP Arg Lys Val Leu Asp Gln Leu Ser Ala Arg arg 103
| | | | | | | | | :
B GHRH Arg Lys Val Leu Gly Gln Leu Ser Ala Arg Lys 21
Met Leu Trp Arg Cys Thr Ala Tyr Tyr Cys Phe Thr Leu Phe Phe Leu 4g
Leu Phe Arg Ala Ser Ala Leu|Arg Arg|Arg val val Ser Gly Ser Lys 32
Gly Ser Ala Ala Leu Ala Leu Cys Arg Gln Phe Glu Gln Leu Ser Ala 48
amnesiac 55 Glu Glu Cys Arg Thr Thr Gln Leu Arg Tyr His Tyr
ser|Arg Arg|Glu Arg Ala Glu Glu Cys Arg Thr Thr Gln Leu Arg Tyr 64 : | .
PACAP-38 2 Ser Asp Gly Ile Phe Thr Asp Ser Tyr Ser Arg Tyr
His Tyr His Arg Asn Gly Ala Gln Ser Arg Ser Leu Cys Ala Ala val 80
Leu Cys Cys|Lys Arg|Ser Tyr Ile Pro Arg Pro Asn Phe Ser Cys Phe 96 amnesiac His Arg Asn Gly Ala Gln Ser Arg Ser Leu Cys Ala
: FE | : | |
? PACAP-38 Arg Lys Gln Met Ala Val Lys Lys Tyr Leu Ala
Ser Leu Val Phe Pro Val Gly Gln Arg Phe Ala Ala Ala Arg Thr Arg 112
i amnesiac Ala Val Leu Cys Cys Lys Arg 85
Phe Gly Pro Thr Leu Val Ala Ser Trp Pro Leu Cys Asn Asp Ser Glu 128 | | | | |
PACAP-38 Ala Val Leu Gly Lys Arg 30
Thr Lys Val Leu Thr Lys Trp Pro Ser Cys Ser Leu Ile Gly Arg Arg 144
Ser Val Pro Arg Gly Gln Pro Lys Phe Ser Arg Glu Asn Pro Arg Ala 160
Leu Ser Pro Ser Leu Leu Gly Glu Met Arg 170

Fig. 3 (left). Molecular cloning, cDNA isolation, and sequence analysis of
the amn gene. (A) Two P elements inserted 1.8 kb apart in the 19A region
of the X chromosome (74). Genomic DNA is indicated by the black and
striped boxes. Apparently, two gene rearranging events occurred in this
strain. (i) The DNA between the two elements was inverted. The striped box
shows inverted material. (i) A deletion removed approximately 800 bp of
genomic DNA and most of the right-most P element. Parentheses include
the extent of the deletion. P element insertions are shown as triangles, and
the arrows indicate the direction of P element transcription. Open boxes
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denote the approximate position of the two 3.6-kb cDNAs isolated, one of
which has a poly(A) tail. (B) Protein sequence of the amn* open reading
frame. The predicted signal sequence is dashed underlined, putative diba-
sic cleavage sites are boxed, and a COOH-terminal amidation signal is
double underlined. The triangle indicates the P element insertion. Fig. 4
(right). Homology between the predicted amn peptides and the PACAP
precursor protein: (prepro-PACAP), the mature PACAP (PACAP-38), and
GHRH. Vertical lines indicate identical residues; colons identify similar ami-
no acids.
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tides are unknown, but both the genetic
and molecular evidence suggest that the
peptides act through adenylate cyclase to
increase the concentration of cAMP. The
second site suppressor screen that produced
the P element amn allele selected for muta-
tions that suppressed dnc female sterility,
which is caused by elevated cAMP concen-
trations in phosphodiesterase-deficient fe-
male flies (I, 4). Suppressor mutations
should affect genes that, like the rut adeny-
late cyclase, normally act to increase cAMP
concentrations (2, 3).

Identification of the Drosophila memory
mutant amnesiac as a neuropeptide-encoding
gene implicates the putative peptide or pep-
tides in neuronal plasticity. Many mammali-
an peptides have intriguing patterns of ex-
pression in the central nervous system, well-
characterized receptors, and documented ef-
fects on standard second messenger systems.
Nevertheless, most of these peptides have no
defined physiological or behavioral roles.
Mutations, with functional information de-
rived from their phenotypes, address these
issues directly. Our present finding that a
specific behavioral defect results from a mu-
tation in a probable neuropeptide gene is a
first step toward dissecting the functional
role of neuropeptides in the brain. The in-
ference that a specific peptide may be in-
volved in extending memory beyond initial
response times of second messenger systems
activated by classical neurotransmitters is
potentially of general importance. Whether
mammalian homologs of the amn gene prod-
ucts play a similar role in their hosts is an
open, inviting question (22).
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Control of Proton Sensitivity of the NMDA
Receptor by RNA Splicing and Polyamines

Stepheﬁ F. Traynelis,* Melissa Hartley, Stephen F. Heinemann

The function of the N-methyl-D-aspartate (NMDA)-preferring glutamate receptor can be
regulated by extracellular pH, a process that may be important during ischemia in the brain
or during seizures. Protons inhibit NMDA receptor function by 50 percent at pH 7.3 through
interactions with the NR1 subunit, and both polyamines and NR1 exon 5 potentiate
receptor function through relief of the tonic proton inhibition present at physiological pH.
A single amino acid (lysine 211) was identified that mediates the effects of exon 5 in the
rat brain. Electroneutral substitutions at this position restored pH sensitivity and, conse-
quently, polyamine relief of tonic inhibition. This effect, together with the structural simi-
larities between polyamines and the surface loop encoded by exon 5, suggest that exon
5 may act as a tethered pH-sensitive constitutive modulator of NMDA receptor function.

NMDA receptors serve many functions in
the developing and adult central nervous
system (1). However, activation of these re-
ceptors also can contribute to the pathophys-
iology of epilepsy (2) and stroke (3). One
way the brain protects itself from the poten-
tially harmful actions of NMDA receptors is
to tightly regulate their function. Indeed,

Fig. 1. Control of NMDA receptor proton inhibition
by NR1 exon 5. (A) NR1 is constructed from 22
exons, four of which can be alternatively spliced
(bold) to form nine isoforms (77, 217); stop codons
are shown as arrowheads. The third exon, which
contains a stop codon, is not shown. Many of the
amino acids encoded by exon 5 (uppercase let-
ters) possess side chains that contain = molecular
orbital systems (~). Helix and B sheet regions
shown were predicted (72) according to Rost and
Sander; accuracy was <72% if this region of NR1
behaved as a soluble protein. Other algorithms
predict helices at Ala'74 to Ser'89, Val?25 to Arg238
(Chou and Fasman), His'"" to Lys'®3, and Val?2®
to Leu?*? (Garnier et al.), with an estimated accu-
racy of about 50 to 55%. B sheets were predict-
ed at Lys?'* to Phe?'® (Chou and Fasman) and
Glu?'@ to Phe?'® (Garnier et al.). Nearly identical
results were obtained for NR1 — exon 5. The
surface probability index was calculated from
the amino acid surface probabilities (72). Down-
ward denotes the increasing likelihood that res-
idues are accessible to water. (B) Current re-
sponses at —60 mV in Ba?* to glutamate +
glycine (pH 6.8 and pH 7.6) are shown from
oocytes injected with NR1 — exon 5 and NR1

+ exon 5. Scale bars are 10 nA and 50 s. (C) Mean agonist-induced responses
were determined for NR1 * exon 5. Identical quantities of splice variant cRNA
(from four preparations) were injected into oocytes pairwise (1 = 19 cells per
point; the asterisk denotes P < 0.05). For all figures, vertical arrows mark

NMDA receptors are controlled by many
endogenous substances as well as second
messenger systems (1). Of the effects of en-
dogenous ions on NMDA receptor function,
inhibition by extracellular protons (4, 5) is
particularly interesting for three reasons.
First, ion-selective electrodes have provided
information that describes changes in extra-
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cellular pH during normal brain function
(6). For example, the acidic and alkaline
transients associated with synaptic transmis-
sion are sufficient to alter synaptic NMDA
receptor activation (6). Second, the acidifi-
cation of the interstitial spaces that occurs
during both seizures and ischemia (7) will
inhibit NMDA receptors. Because NMDA
receptor activation is critical to both seizure
development and stroke-induced neuronal
damage, receptor inhibition by falling pH
should serve as negative feedback (5, 8).
Third, the sensitivity of NMDA receptors to
physiological concentrations of protons sug-
gests that NMDA receptors are tonically
inhibited at physiological pH (5).

We studied the proton sensitivity of re-
combinant rat NMDA receptors expressed
in Xenopus laevis oocytes (9) and in HEK 293
cells (10). Similar to native NMDA recep-
tors (5), rat homomeric NR1 (11) function is
strongly inhibited by physiological concen-
trations of protons ( Table 1). This observa-
tion suggests that the NR1 subunit contains
molecular entities that regulate receptor
function in a pH-sensitive manner.

At least three exons (Fig. 1A) can be
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physiological pH (7.3) and error bars are SEM (whenever larger than the sym-
bol). (D) The composite H* inhibition curves for NR1 = exon 5 are shown as a
percent of the fitted maximum (see Table 1 for IC, values). The physiological
range is superimposed as a box. Data are from 77 oocytes.
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