- The chemical composition of antigorite from rock sample Mg159c (in percent by weight) is: SiO₂, 43.32; Cr₂O₃, 0.23; Al₂O₃, 1.30; Fe₂O₃, 0.50; FeO, 2.59; MnO, 0.04; MgO, 39.62; NiO, 0.08. The x_{Mg}(= molar MgO/MgO+FeO) = 0.965; x_{Fe}₃₊ (= molar Fe³⁺/Fe_{tol}) = 0.15 (determined by Mössbauer spectroscopy).
- 11. V. Trommsdorff and B. W. Evans, *Am. J. Sci.* **272**, 423 (1972).
- 12. Up to 2.2 GPa we used a non-end-loaded piston cylinder with a 19-mm bore. From 2.2 to 3.5 GPa we used an end-loaded piston cylinder with 14-mm bore. We encapsulated 15 to 20 mg of the starting mix in $Ag_{50}Pd_{50}$ containers and welded them shut; NaCl assemblies were used. Pressures are considered to be accurate to within \pm 0.05 GPa. Temperatures were measured with shielded Chromel-Alumel (Philips) thermocouples (up to 2.2 GPa) and Pt-Pt₁₀Rh thermocouples at higher pressures. Temperatures were controlled to within \pm 2°C but not corrected for pressure.
- D. Walker, M. A. Carpenter, C. M. Hitch, Am. Mineral. **75**, 102 (1990); D. Walker, *ibid.* **76**, 1092 (1991). Multi-anvil experiments (Table 1) were performed with tungsten carbide cubes with a truncated edge length of 12 mm. The pressure-transmitting octahedron and gasket fins were fabricated from MgO-based castable ceramics (Ceramacast 584) and fired at 1150°C for at least 6 hours. Stepped graphite furnaces of 3.5 mm outside diameter and 3.1 mm inside diameter (2.7 mm cen-

tral stepped area) were used to minimize temperature gradients. Approximately 3 to 4 mg of starting material were placed in 1.6-mm Ag₅₀Pd₅₀ or Pt capsules that were then welded shut. Temperatures were measured with two Pt-Pt10Rh thermocouples inserted laterally from the fins. Measured temperature gradients at 600°C were less than 10°C/mm. Temperatures of the multi-anvil experiments (Table 1) were not corrected for pressure and are considered to be accurate to within ±10°C. Pressure was calibrated at room temperature against the phase transitions in Bi metal and at high temperature (1000° to 1200°C) against the transformations of quartz to coesite (1200°C, 3.2 GPa) [S. R. Bohlen and A. L. Boettcher, J. Geophys. Res. 87, 7073 (1982)], coesite to stishovite (1000°C, 9.1 GPa) [T. Yagi and S.-I. Akimoto, *Tectonophysics* **35**, 259 (1976)], fayalite (Fe₂SiO₄) to γ -spinel (1000°C, 5.0 GPa) [T. Yagi, M. Akaogi, O. Shimomura, T. Suzuki, S.-I. Akimoto, J. Geophys. Res. 92, 6207 (1987)], and the phase transformation of CaGeO3 from garnet to perovskite structures (1000°C, 6.1 GPa) [J.-I. Susaki, M. Akaogi, S.-I. Akimoto, O. Shimomura, Geophys. Res. Lett. 12, 729 (1985)]. Pressures are considered to be accurate to within ± 0.2 GPa between 3.5 and 8 GPa. We quenched the piston cylinder and multianvil experiments isobarically by turning off the heating power; quenching rates for both types of apparatus were in the range 300° to 500°C per second.

Dinitrogen Cleavage by a Three-Coordinate Molybdenum(III) Complex

Catalina E. Laplaza and Christopher C. Cummins*

Cleavage of the relatively inert dinitrogen (N₂) molecule, with its extremely strong N=N triple bond, has represented a major challenge to the development of N₂ chemistry. This report describes the reductive cleavage of N₂ to two nitrido (N³⁻) ligands in its reaction with Mo(NRAr)₃, where R is C(CD₃)₂CH₃ and Ar is 3,5-C₆H₃(CH₃)₂, a synthetic three-coordinate molybdenum(III) complex of known structure. The formation of an intermediate complex was observed spectroscopically, and its conversion (with N=N bond cleavage) to the nitrido molybdenum(VI) product N=Mo(NRAr)₃ followed first-order kinetics at 30°C. It is proposed that the cleavage reaction proceeds by way of an intermediate complex in which N₂ bridges two molybdenum centers.

The relatively inert dinitrogen molecule (N_2) composes 78% of the Earth's atmosphere; the development of this molecule's chemistry is clearly desirable if this immense natural resource is to be utilized optimally. In this regard, the discovery of mild methods for scission of the $N \equiv N$ triple bond represents a major challenge. Although the metalloenzyme nitrogenase constitutes a unique biological nitrogenfixing system (1) and the Haber-Bosch ammonia synthesis is an example of industrial nitrogen fixation (2), little molecular-level detail is available concerning the critical N₂ cleavage processes operative for either of these processes. Well-characterized synthetic systems capable of splitting N_2 have been elusive (3), despite the multitude of known transition-metal complexes containing intact dinitrogen as a ligand (4). In connection with a study on cleavage of the N–N bond in nitrous oxide (N₂O), Laplaza *et al.* reported (5) the synthesis and structural characterization of the three-coordinate Mo(III) complex Mo(NRAr)₃ [1, where R = C(CD₃)₂CH₃ and Ar = 3,5-C₆H₃Me₂ (Me, methyl), Fig. 1]. We now report the reductive scission of N₂ to two N^{3–} ligands in its reaction with 1. The reaction occurs in hydrocarbon solution at low temperatures (-35° to 30°C) and pressures (1 atm).

Purification of red-orange 1 consisted of recrystallization under an Ar atmosphere (ethyl ether, 0.1 M, -35° C). When we attempted to purify 1 by recrystallization under an atmosphere of N₂, the solutions (ethyl ether, 0.1 M, -35° C) took on an intense purple color in less than 45 min. Examination of the purple

- K. Yamamoto and S.-I. Akimoto, Am. J. Sci. 277, 288 (1979).
- O. Yu. Khodyrev and M. Agoshkov, *Geochem. Int.* 23 (no. 7), 47 (1986).
- 16. B. Wunder and W. Schreyer, *Ber. Deutsch. Min. Ges. Beih. Eur. J. Min.* **6** (no. 1), 316 (1994).
- 17. C. E. Manning, Mineral. Mag. A 58, 5515 (1994).
- 18. I. D. Ryabchikov, W. Schreyer, K. Abraham, Contrib.
- Mineral. Petrol. 79, 80 (1982).
 19. J. H. Davies and D. J. Stevenson, J. Geophys. Res. 97, 2037 (1992).
- W. Schmidt and S. Poli, *Earth. Planet. Sci. Lett.* 124, 105 (1994).
- 21. A. B. Thompson, Nature 358, 295 (1992).
- 22. E. Bonatti and K. Crane, *Sci. Am.* **250**, 36 (May 1984).
- 23. P. Fryer, E. L. Ambos, D. M. Hussong, *Geology* **13**, 774 (1985).
- 24. M. J. Keen and M. Salisbury, *Geosci. Can.* **16**, 177 (1990).
- 25. R. E. T. Hill and A. L. Boettcher, *Science* **167**, 980 (1970).
- D. H. Green, *Earth Planet. Sci. Lett.* **19**, 37 (1973).
 We acknowledge the constructive reviews of J. A. D. Connolly, B. W. Evans, R. J. Sweeney, D. Bernoulli, B. Wunder, and M. Mellini as well as the comments of two anonymous reviewers. This work was supported under Swiss National Science Foundation grant 2000-037388.93/1.

20 December 1994; accepted 9 March 1995

solutions by ²H nuclear magnetic resonance (NMR) spectroscopy (6) revealed that the signal at 64 parts per million (ppm) for 1 was being replaced by a single new peak at 14 ppm, attributable to the purple species (2, Fig. 2). When we carried out the reaction using pure 1 in toluene (leaving all other conditions unchanged), from which the complex crystallizes less readily, complete conversion to 2 took approximately 48 hours at -35° C. On warming to 30°C, the purple solutions of 2 gradually became gold and lost their paramagnetism. Removal of all volatile material in vacuo left an amber crystalline residue that dissolved readily in benzene- d_6 for ¹H NMR spectroscopic analysis. The ¹H NMR spectroscopy showed that a terminal nitrido Mo(VI) complex (3, Fig. 2), identical to the complex that we isolated

Fig. 1. Line drawing of the molecular structure of Mo(NRAr)₃ (**1**). The structure of **1** was determined by x-ray crystallography (5).

Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.

^{*}To whom correspondence should be addressed.

and characterized in conjunction with our N_2O study (5), had formed in essentially quantitative yield.

In a preparative-scale experiment, the nitrido complex 3 was isolated in 76% recrystallized yield from the reaction of 1 (300 mg in 6 ml of toluene) with N₂ (1 atm) and was identical in all spectroscopic and physical properties to samples of 3 prepared by other means (7). To verify unequivocally that the source of the nitrido nitrogen atom was indeed N₂, we carried out the procedure under ¹⁵N₂ (1 atm). Infrared spectroscopy showed that ¹⁵N≡Mo(NRAr)₃ (3-¹⁵N, frequency $\nu_{Mo≡^{15}N} = 1014 \text{ cm}^{-1}$) formed to the exclusion of unlabeled 3 ($\nu_{Mo≡^{N}} = 1042 \text{ cm}^{-1}$), and a signal for 3-¹⁵N was located at +840 ppm in the ¹⁵N

Fig. 2. Proposed sequence of reactions for the conversion of Mo(NRAr)₃ (1) to N \equiv Mo(NRAr)₃ (3) in the presence of N₂ by way of the intermediate complex 2; $t_{1/2}$ is the half-life for the conversion of 2 to 3.

NMR [with reference (8) to external nitromethane at +380.2 ppm]. Identical spectral properties were found for $3^{-15}N$ prepared independently (5) by treatment of 1 with selectively labeled ${}^{15}NNN(p-C_6H_4Me)$.

A reasonable supposition is that the purple intermediate 2 is a dimolybdenum complex with a bridging dinitrogen ligand, as depicted in Fig. 2. Schrock and coworkers have observed the formation of purple paramagnetic dinuclear dinitrogen complexes containing Mo(III) in a triamidoamine coordination environment and have verified their structural assignment by x-ray crystallography in one case (9). Symmetry considerations (10) indicate that dinuclear systems of this sort should be paramagnetic, with the two unpaired electrons located in a degenerate pair of delocalized Mo–N–N–Mo π orbitals. As yet we have been unable to isolate purple 2 to verify its structure by x-ray crystallographic means, in part because of its thermal instability with respect to 3.

The formation of purple 2 appears to proceed more rapidly at -35° C than at room temperature ($\sim 28^{\circ}$ C); solutions of 1 (ethyl ether, 0.1 M) do not turn purple when stored under N_2 (1 atm) at room temperature for 2 to 8 hours, and conversion to 3 is not appreciable ($\leq 5\%$) under these conditions. The more rapid N_2 uptake at -35° C is likely to be a manifestation of the greater solubility of N_2 in organic solvents with decreasing temperature (11), which would lead to greater equilibrium concentrations of a mononuclear N₂ adduct $(N_2)Mo(NRAr)_3$ (1·N₂), the logical immediate precursor to 2. Because the conversion of dinuclear 2 to nitrido 3 could be monitored by ²H NMR, we were able to verify that the disappearance of 2 at 30° C is a first-order process [rate constant k = (3.32) \pm 0.13) \times 10⁻⁴ s⁻¹; four runs]. This result is expected for direct dissociation of a dimeric entity into two monomeric units, as postulated in Fig. 2 $(2 \rightarrow 3)$. The rate constant at 30°C for conversion of $2^{-15}N_2$ to 3-¹⁵N was indistinguishable [$k = (3.16 \pm$ $(0.32) \times 10^{-4} \text{ s}^{-1}$; four runs] from the value for unlabeled 2.

Four-coordinate molybdenum nitrido complexes have been known for some time (12), and the tris(amido) molybdenum nitrido complex $N \equiv Mo(NPh_2)_3$ (Ph = phenyl), closely related to 3, has been shown by x-ray crystallography to be monomeric in the solid state (13). It is thought that the $M \equiv N$ triple bond is one of the strongest metal-ligand bonds (14), and its formation clearly provides the thermodynamic driving force for the N₂ cleavage reaction elucidated here. A lower limit for the $M \equiv N$ dissociation enthalpy of ~472 kJ mol⁻¹ is suggested by the overall transformation 1 + 0.5 N₂ \rightarrow 3, in view of the

SCIENCE • VOL. 268 • 12 MAY 1995

enthalpy of dissociation of N_2 (944 kJ mol⁻¹) (15). Monomeric Mo(NRAr)₃ (1) is formally related to the well-known dimeric Mo(III) complexes $X_3Mo\equiv MoX_3$ (X = alkyl, amide, alkoxide), which have unbridged metal-metal triple bonds (16). Severe steric constraints (see Fig. 1) apparently render 1 immune to dimerization, endowing the complex with the stored energy required for the observed reactivity toward N_2 .

Our work establishes the reductive cleavage of N₂ to two nitrido (N³⁻) ligands, mediated by a soluble transition-metal complex of known structure. This system has permitted a spontaneous transition-metal-mediated N₂ cleavage process ($2 \rightarrow 3$) to be studied (17, 18).

REFERENCES AND NOTES

- M. K. Chan, J. Kim, D. C. Rees, *Science* **260**, 792 (1993); D. C. Rees, *Curr. Opin. Struct. Biol.* **3**, 921 (1993); W. H. Orme-Johnson, *Science* **257**, 1639 (1992); D. Sellmann, *Angew. Chem. Int. Ed. Engl.* **32**, 64 (1993); H. B. Deng and R. Hoffmann, *ibid.*, p. 1062.
- 2. T. Travis, Chem. Ind. (N.Y.) 1993, 581 (1993).
- H. W. Lam, C. M. Che, K. Y. Wong, J. Chem. Soc. Dalton Trans. 1992, 1411 (1992); J. D. Buhr and H. Taube, Inorg. Chem. 18, 2208 (1979).
- For leading references to low-valent metal-phosphine dinitrogen complexes, see G. J. Leigh, New J. Chem. 18, 157 (1994); Acc. Chem. Res. 25, 177 (1992); Y. Mizobe, Y. Yokobayashi, H. Oshita, T. Takahashi, M. Hidai, Organometallics 13, 3764 (1994). For recent examples of dinitrogen complexes in organometallic or amidometallic systems, see R. R. Schrock, R. M. Kolodziej, A. H. Liu, W. M. Davis, M. G. Vale, J. Am. Chem. Soc. 112, 4338 (1990); R. Ferguson, E. Solari, C. Floriani, A. Chiesi-Villa, C. Rizzoli, Angew. Chem. Int. Ed. Engl. 32, 396 (1993); J. I. Song, P. Berno, S. Gambarotta, J. Am. Chem. Soc. 116, 6927 (1994); M. D. Fryzuk, T. S. Haddad, M. Mylvaganam, D. H. McConville, S. J. Rettig, *ibid.* 115, 2782 (1993).
- 5. C. E. Laplaza, A. L. Odom, W. M. Davis, C. C. Cummins, J. D. Protasiewicz, *J. Am. Chem. Soc.*, in press.
- Analysis by ²H NMR is up to 42.4 times more suitable than analysis by ¹H NMR for paramagnetic molecules [G. N. La Mar, W. D. Horrocks Jr., R. H. Holm, *NMR of Paramagnetic Molecules* (Academic Press, New York, 1973)].
- 7. We conducted the preparative-scale reaction between 1 and N₂ by storing the toluene solution of 1 at -35°C for about 76 hours. The reaction's progress was monitored occasionally by ²H NMR. When conversion to 2 was judged complete, the reaction mixture was allowed to warm to room temperature (~28°C) over a period of 5 hours, during which time the mixture turned amber. Analysis by ¹H NMR revealed that the nitrido complex 3 had formed cleanly. This complex was recrystallized from ethyl ether at -35°C. Because Mo(NRAr)₃ (1) is extremely sensitive to air and water, in all experiments involving 1 we used appropriately dried and deaerated solvents. The nitrido complex 3 is less sensitive to air and water and may be handled for brief periods in the air without extensive decomposition.
- 8. W. von Philipsborn and R. Müller, *Angew. Chem. Int. Ed. Engl.* **25**, 383 (1986).
- K.-Y. Shih, R. R. Schrock, R. Kempe, J. Am. Chem. Soc. 116, 8804 (1994); M. Kol, R. R. Schrock, R. Kempe, W. M. Davis, *ibid.*, p. 4382.
- F. A. Cotton, Chemical Applications of Group Theory (Wiley, New York, 1990).
- 11. R. Battino, Ed., Nitrogen and Air: Solubility Data Se-

ries (Pergamon, New York, 1982), vol. 10; R. Battino and H. L. Clever, *Chem. Rev.* **66**, 395 (1966). 12. D. M.-T. Chan, M. H. Chisholm, K. Folting, J. C.

- D. M.-T. Chan, M. H. Chisholm, K. Folting, J. C. Huffman, N. S. Marchant, *Inorg. Chem.* 25, 4170 (1986).
- Z. Gebeyehu, F. Weller, B. Neumüller, K. Dehnicke, Z. Anorg. Allg. Chem. 593, 99 (1991).
- W. A. Nugent and J. M. Mayer, *Metal-Ligand Multiple Bonds* (Wiley, New York, 1988).
- 15. F. A. Cotton and G. Wilkinson, *Advanced Inorganic Chemistry* (Wiley, New York, 1988).
- F. A. Cotton and R. A. Walton, *Multiple Bonds Be*tween Metal Atoms (Oxford Univ. Press, New York, 1993).
- Shilov and co-workers have developed nitrogen-fixing systems based on mixed-metal hydroxides [A. E. Shilov, *Pure Appl. Chem.* 64, 1409 (1992)]. Work on synthetic nitrogen-fixing systems originated with Vol'pin and Shur [M. E. Vol'pin and V. B. Shur, *Dokl. Akad. Nauk SSSR* 156, 1102 (1964)]. The direct combination, under mild conditions, of N₂ with elemental Li to give Li₃N is well known [see (15)].

CD1 Recognition by Mouse NK1⁺ T Lymphocytes

Albert Bendelac,* Olivier Lantz,† Mary E. Quimby, Jonathan W. Yewdell, Jack R. Bennink, Randy R. Brutkiewicz

Rare major histocompatibility complex (MHC) class I–like CD1-specific T cells have been isolated from human blood, but it has not been determined whether these clones are part of a defined subset of CD1-specific T cells selected during T cell development, or whether their recognition of CD1 is a fortuitous cross-reaction. In mice, an entire subset of $\alpha\beta$ thymocytes with a unique phenotype was found to be CD1-specific. This particular subset, and its human counterpart, provide evidence that CD1 has a general role in selecting and interacting with specialized $\alpha\beta$ T cells.

 ${f M}$ ouse NK1⁺ T cells constitute up to 20% of the mature compartment of the thymus and are also found in most peripheral tissues, with particular frequency in bone marrow and liver (1–7). They consist of CD4⁺ and CD4-8- double-negative (DN) cells. Unlike other T cells, NK1⁺ T cells express the surface receptors normally associated with natural killer (NK) cells, including NKR-P1 and Ly-49, and they can lyse NKsensitive target cells (8). In addition, they have the unique ability to secrete large amounts of cytokines, especially interleukin-4 (IL-4), upon primary stimulation through their $\alpha\beta$ T cell receptors (TCRs) in vitro (1, 5, 7) and in vivo (9). Because this secretion of IL-4 is rapid, NK1⁺ T cells are likely to promote the differentiation and recruitment of T helper 2 $(T_H 2)$ cells over $T_{H}1$ cells in immune responses in which they are engaged (10). Elucidating the contribution of these specialized T cells thus

A. Bendelac, Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA, and Laboratory of Cellular and Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.

O. Lantz, Laboratory of Cellular and Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA. M. E. Quimby, Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.

J. W. Yewdell, J. R. Bennink, R. R. Brutkiewicz, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.

*To whom correspondence should be addressed. E-mail: abendelac@molbiol.princeton.edu

†On leave from Université Paris-Sud, Kremlin-Bicêtre, France, and from the Laboratoire d'Immunologie Cellulaire et de Transplantation, Paris, France. depends on the identification of their TCR ligands.

Several findings have suggested that the ligand is a nonpolymorphic MHC class I molecule that is conserved in different species. First, thymic selection of NK1⁺ T cells depends on the expression of β_2 -microglobulin (β_2 M) (2, 4) and thus, by implication, on the expression of class I molecules. Second, the TCR repertoire of both CD4⁺ and DN NK1⁺ T cells is largely restricted to TCRs comprising a single, invariant TCR α chain, V_{α} 14-J $_{\alpha}$ 281, paired with V_{β} 8, V_{β} 7, or V_{β} 2 TCR β chains (11). Third, the same TCR repertoire exists in

18. In our investigations of the $\rm N_2$ cleavage reaction, we are attempting to isolate and investigate the intermediates depicted in Fig. 2.

 Financial support for C.C.C. was provided by the Department of Chemistry of the Massachusetts Institute of Technology (MIT) and for C.E.L. by the MIT Undergraduate Research Opportunities Program. C.C.C. thanks R. R. Schrock for many stimulating discussions.

23 February 1995; accepted 31 March 1995

different strains of mice, regardless of MHC haplotype (11). Fourth, a human counterpart to this subset exists that uses TCRs comprising an invariant TCR α chain, $V_{\alpha}24$ -J $_{\alpha}Q$ (the homolog of mouse $V_{\alpha}14$ -J $_{\alpha}281$), paired with $V_{\beta}11$ TCR β chains (homologs of mouse $V_{\beta}8$) (11, 12).

A clue to the identity of the $NK1^+$ T cell ligand is the ligand's tissue distribution. Expression of $\beta_2 M$ on bone marrow-derived cells, but not on thymic epithelium, enables thymic selection of $NK1^+$ T cells (2, 4). The relevant bone marrow-derived cell is probably a thymocyte rather than a dendritic cell or macrophage, because mice with severe combined immunodeficiency disease that were inoculated with β_2 M-deficient fetal liver cells did not generate NK1⁺ T cells (although they developed mainstream T cells), even though their thymic dendritic cells were largely β_2 M-positive (13). In addition, NK1⁺ T cells induce cytolysis of cortical thymocytes (14). These findings suggest that immature thymocytes express the NK1⁺ T cell ligand, whereas thymic epithelial cells and professional antigen-presenting cells (APCs) do not. This pattern fits that of the TL and CD1 gene families, which, in contrast to classical MHC class I molecules, are mainly expressed by immature $CD4^+8^+$ thymocytes (15, 16).

Table 1. Recognition of an MHC class I ligand by DN32.D3, a NK1⁺ T cell-derived hybridoma. Duplicate samples of DN32.D3 hybridoma cells (3 × 10⁴) were cultured with 5 × 10⁵ cells from the thymus, spleen, or bone marrow of the indicated mouse strains in 96-well flat-bottom microplates for a period of 20 to 24 hours. IL-2 released in the supernatant was measured in units per milliliter, where 1 U/ml corresponds to 3 pM recombinant human IL-2 as measured by CTLL indicator cells (1). Mean values for duplicate samples are given. Standard errors were less than 20% of this value. Purified F23.2 mAb to V_p8.2 was used at 1 µg/ml, versus the same concentration of 28.8.6S, an isotype-matched mAb to H-2K^bD^b. These results were confirmed in two to five separate experiments.

Tissue source	Stimulator cell strains and IL-2 production (U/ml)					
	B6	B	10.A	BALB/c	129	B6.β ₂ M ^{-*}
		Experin	nent 1		<u></u>	
Thymus	27		20	44	32	<1
-		Experin	nent 2			
Thymus + anti-H-2K ^b D ^b mAb	32					
Thymus + anti-V _β 8.2 mAb	<2					
		Experiment 3				
Thymus	29					
Spleen	0.5					
Bone marrow	0.2					

*B6. β_2 M⁻ mice bear a homozygous inactivation of their gene encoding β_2 M and were backcrossed eight times to C57BL/6.