
10. The chemical compos~tion of antlgorite from rock 
sample Mg159c (ln percent by welght) IS: SIO,, 
43.32 Cr,O,, 0.23. Al,O,, 1 30; Fe,03, 0 50; FeO, 
2.59; Mn0,O 04; Mg0,39.62, NIO, 0 08. Thex,, (= 
molar MgOiMgO+FeO) = 0.965, x,,3- (= molar 
Fe3+iFe,,,) = 0.1 5 (determined by Mossbauer spec- 
troscopy) 

11 \I Trommsdorff and B W. Evans, Am. J Scl. 272, 
423 (1 972) 

12 Up to 2 2 GPa we used a non-end-loaded p~ston 
cylinder w t h  a 19-mm bore From 2 2 to 3.5 GPa we 
used an end-loaded p~ston cylinder with 14-mm 
bore. We encapsulated 15 to 20 mg of the startlng 
m x  In Ag5,Pd5, contaners and welded them shut, 
NaC assembles were used Pressures are consd- 
ered to be accurate to wlthn 2 0.05 GPa. Temper- 
atures were measured 1~11th shielded Chrome-Al- 
umel (Phllps) thermocouples (up to 2.2 GPa) and 
Pt-Pt,,Rh thermocouples at hgher pressures Tem- 
peratures were~controlled to withn 2 2°C but not 
corrected for oressure. 

13. D. Walker. M '  A. Carpenter. C. M. H~tch,  Am. Min- 
eral 75, 102 (1990); D. Walker, ibld. 76, 1092 
(1 991) Mul t -anv experments (Table 1) were per- 
formed with tungsten carbde cubes w t h  a truncat- 
ed edge length of 12 mm. The pressure-transmt- 
t n g  octahedron and gasket fins were fabricated 
from MgO-based castable ceramics (Ceramacast 
584) and fired at 1150°C for at least 6 hours. 
Stepped graphite furnaces of 3.5 mm outsde d -  
ameter and 3 1 mm n s d e  diameter (2.7 mm cen- 

tral stepped area) were used to mnimze tempera- 
ture gradents. Approxmately 3 to 4 mg of starting 
material were placed In 1 6-mm Ag5,Pd5, or Pt 
capsules that were then welded shut. Tempera- 
tures were measured with two Pt-Pt,,Rh thermo- 
couples Inserted laterally from the fins Measured 
temperature gradients at 600°C were less than 
1OCC/mm. Temperatures of the m u t - a n v  experl- 
ments (Table 1) were not corrected for pressure 
and are considered to be accurate to wlthln 
210°C. Pressure was calibrated at room temper- 
ature aganst the phase transitions n B metal and 
at h ~ g h  temperature (1000" to 1200°C) against the 
transformatons of quartz to coesite (1 200°C, 3.2 
GPa1 IS. R. Bohlen and A. L. Boettcher. J. Geo- , , 
phys. Res 87. 7073 (1982)], coeslte to stishov~te 
(1000°C. 9 1 GPa) [T. Yag and S -I. Akimoto. Tec- 
tonophysics 35, 259 (1 976)], fayalite (Fe,SiO,) to 
y-spnel (100O0C, 5 0 GPa) [T Yagl. M AkaoG, 0 
Shmomura, T Suzuki, S.-l Akmoto J. Geophys. 
Res 92. 6207 (1987)], and the phase transforma- 
t o n  of CaGeO, from garnet to perovskite struc- 
tures (100OCC, 6 I GPa) [J - I .  Susaki. M Akaogi. 
S -I. Akmoto. 0. Shimomura, Geophys. Res. Lett. 
12, 729 (1985)l Pressures are considered to be 
accurate to withn 2 0 . 2  GPa between 3.5 and 8 
GPa. We quenched the p~ston cylinder and multl- 
a n v  exper~ments sobarically by turnlng off the 
heatng power, quenching rates for both types of 
apparatus were In the range 300" to 500°C per 
second. 

Dinitrogen Cleavage by a Three-Coordinate 
Molybdenum(lll) Complex 

Catalina E. Laplaza and Christopher C. Cummins* 

Cleavage of the relatively inert dinitrogen (N,) molecule, with its extremely strong NsN 
triple bond, has represented a major challenge to the development of N, chemistry. This 
report describes the reductive cleavage of N, to two nitrido (N3-) ligands in its reaction 
with Mo(NRAr),, where R is C(CD3),CH3 and Ar is 3,5-C,H3(CH3),, a synthetic three- 
coordinate molybdenum(llI) complex of known structure. The formation of an intermediate 
complex was observed spectroscopically, and its conversion (with NEN bond cleavage) 
to the nitrido molybdenum(Vl) product NsMo(NRAr), followed first-order kinetics at 30°C. 
It is proposed that the cleavage reaction proceeds by way of an intermediate complex in 
which N, bridges two molybdenum centers. 

T h e  relatively inert dinitrogen molecule 
( N2)  coinposes 78% of the Earth's atino- 
sphere; the development of this molecule's 
chemistry is clearly desirable if this im- 
inense natural resource is to  be utilized 
optimally. I11 this regard, the discovery of 
mild methods for sclssion of the NzN 
trlple bond represents a major challenge. 
Although the metalloenzyine nltrogenase 
constitutes a unlque blologlcal nitrogen- 
flxlng systein ( 1 )  and the Haber-Bosch 
ammonia synthesis is an  example of indus- 
trial nitrogen fixatlon ( 2 ) ,  little molecu- 
lar-level detall 1s available concerning the 
crltical N2  cleavage processes operative for 
either of these processes. Well-character- 
ized synthetic systems capable of spllttlng 
N Z  have been eluslve ( 3 ) ,  despite the mul- 
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titude of known transition-metal coin- 
plexes containing intact dinitrogen as a 
llgand 14). In connection with a studv on " 
cleavage of the N-N bond In nltrous oxide 
(NZO) ,  Laplaza e t  al. reported (5) the 
synthesis and structural characterlzatlon of 
the three-coord~nate Mo(II1) complex 
M o ( N R A ~ ) ~  [ I ,  where R = C(CD3)2CH3 
and Ar = 3,5-C,H,Me2 (Me, methyl), 
Fig. I ] .  We  now report the reductive scls- 
slon of N2 to two N 3  ligands In ~ t s  reac- 
tlon with 1. The reactlon occurs in hydro- 
carbon solutlon at low temperatures 
(-35" to 30°C) and pressures (1  atm) 

Purlficatlon of red-orange 1 consisted 
of recrystalllzation under an Ar atmo- 
sphere (ethyl ether, 0.1 M, -35°C). 
When we attempted to purify 1 by recrys- 
talllzatlon under an atmosphere of N2,  the 
solutions (ethvl ether. 0.1 M. -35°C) , , 
took on an  intense purple color in less 
than 45 min. Examination of the purple 

14. K Yamamoto and S -I. Akimoto, Am. J Sci. 277, 
288 (1 9791. 

15 0 .  Y; ~hbdyrev and M. Agoshkov, Geochem, lnt 
23 (no 7), 47 (1 986) 

16 B Wunder and W Schreyer, Ber Deutsch Min 
Ges. Be~h. Edr J fldin. 6 (no. I ) ,  316 (1994) 

17 C E. Mannng, Mineral. Mag A 58. 551 5 (1 994). 
18 I. D Ryabchkov, W. Schreyer, K Abraham, Contrib. 

fd~neral. Petrol. 79. 80 11 9821 
19 J H. Davles and D J. Stevenson, J. Geophys. Res 

97. 2037 (1 992). 
20 M. W. Schmidt and S. P o .  Eaiih. Planet Sci, Lett 

124, 105 (1 994) 
21 A B Thompson, ~Vature 358 295 (1992). 
22 E Bonatti and K Crane, SCI. Am. 250. 36 (May 

19841 . - 

23 P ~ ( e r ,  E. L Ambos. D. M Hussong, Geology 13, 
774 (1 985) 
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(1 990) 
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(1 970) 
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of two anonymous reviewers. Ths jr~ork was sup- 
ported under SWIISS National Sclence Foundation 
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solutions by 'H nuclear magnetic reso- 
nance (NMR) spectroscopy (6)  revealed 
that the signal at 64 parts per inillion 
(ppm) for 1 was being replaced by a single 
new peak at 14 ppm, attributable to the 
purple species ( 2 ,  Fig. 2 ) .  When we carried 
out the reaction using pure I in toluene 
(leaving all other conditions unchanged), 
from which the complex crystallizes less 
readily, coinplete conversion to 2 took 
approximately 48 hours at -35OC. O n  
warming to 30°C, the purple solutions of 2 
gradually became gold and lost thelr para- 
magnetism. Removal of all volatile mate- 
rial in vacuo left an amber crystalline res- 
idue that dissolved readily in benzene-d, 
for 'H NMR spectroscopic analysis. The  
'H NMR spectroscopy showed that a ter- 
minal nitrido Mo(V1) coinplex ( 3 ,  Fig. 2 ) ,  
identical to  the complex that we isolated 

Fig. 1. Line drawing of the molecular structure of 
Mo(NRAr), (1). The structure of 1 was determined 
by x-ray crystallography (5). 
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and characterized in conjui~ction with our 
N z O  study (5) ,  had formed in essentially 
quantitative yield. 

It1 a preparative-scale experiment, the 
nitrido co~nplex 3 was isolated in 76% 
recrystallized yield from the reaction of 1 
(300 mg in 6 ml of toluene) with N2  (1  
atm) and \\.as identical in all spectroscopic 
and physical properties to samples of 3 
prepared by other means (7). To  verify un- 
equivocally that the source of the n~trido 
nitrogen atom was indeed N2, we carried out 
the procedure under I5Nq (1 atm). Infrared 
spectroscopy showed that "N-Mo(NRAr), 
(3-"N, frequency vMastjN = 1014 cm-') 
formed to the exclusion of ui~labeled 3 
(vhleV = 1042 cmP1), and a signal for 
3-"N was located at +840 ppm in the I5N 

ArRN,, 
ArRN <.. / NRAr 

?? 

Mo / \ NRAr 
ArRN 

NRAr 

t,,* = 35 n in v 
2 Mo . . a , #  

ArRN/ \llNRAr (3) 

NRAr 

Fig. 2. Proposed sequence of reactons for the 
conversion of MojNRAr), (1) to N-Mo(NRAr), (3) In 
the presence of N, by way of the ntermed~ate com- 
plex 2; t,,, is the half-fefor the converson of 2 to 3. 

NblR [with reference (8) to external ni- 
tromethaile at +380.2 ppm]. Identical spec- 
tral properties were found for 3-15N prepared 
~t~dependently (5) by treatment of 1 w t h  
selectively labeled 15NNN(p-C,H4Me). 

A reasonable suppos~tion is that the 
ourole i i~ter~nediate  2 is a diinol~dxlenum 
A 

complex with a bridging d ~ n i t r o ~ e k  ligand, 
as depicted in Fig. 2. Schrock and co- 
workers have observed the formation of 
purple paramagnetic dinuclear d~nitrogen 
complexes contain~ng Mo(II1) in a tri- 
arnidoamine coordination environment 
and have ver~fied t h e ~ r  structural assign- 
ment by x-ray crystallography in one case 
(9) .  Symmetry considerations ( 10) indi- 
cate that dinuclear systelus of this sort 
should be oaramaonetic. with the two uil- 
paired electrons rocate2 In a degenerate 
 air of delocalized Mo-N-N-Mo T orbit- 
als. As yet we have been unable to isolate 
purple 2 to verify its structure by x-ray 
crystallographic means, in part because of 
its thermal ~ns tab i l~ ty  w ~ t h  respect to 3 .  

The formation of purple 2 appears to 
proceed Inore rapidly at -35°C than at 
roo111 temperature (-28OC); solutions of 1 
(ethyl ether, 0.1 M )  do not turn purple 
when stored under N, (1  atm) at room 
temperature for 2 to 8 hours, and conver- 
sion to 3 is not a ~ ~ r e c l a b l e  ( 5 5 % )  under 

A A 

these conditions. The more rapid N2 uptake 
at -35°C is likely to be a inai~lfestat~on of 
the greater solubility of N7 in organic sol- 
vents with decreasing temperature (1 I ) ,  
which a,ould lead to greater eauilibrlu~n - 
concentrations of a mononuclear N2 adduct 
(Nz)Mo(NRAr), ( l .N2) ,  the logical imme- 
diate precursor to 2. Because the conversion 
of dinuclear 2 to nitrido 3 could be moni- 
tored by 'H NMR, me were able to verify 
that the dlsao~earance of 2 at 30°C is a 
f~rst-order process [rate constant ic = (3.32 
i- 0.13) x 10-%-'; four runs]. This result 
IS expected for direct dissociat~on of a 
dirner~c entlty into two ~nonomeric units, as 
postulated in Fig. 2 ( 2  + 3) .  The rate 
constant at 30°C for conversion of 2-15N2 to 
3-"N was indistinguishable [ic = (3.16 2 
0.32) x l op4  s-'; four runs] from the value 
for uillabeled 2. 

Four-coord~nate ~nolybdenum nitr~do 
conlplexes have been known for some time 
(12), and the ti~s(amido) molybdenum ni- 
t r~do  co~nplex N-hlo(SPh2), (Ph = phe- 
nyl), closely ielated to 3 ,  has been shown b\ 
x-ray crystallography to be monolnerlc In 
the sold state (13). It IS thought that the 
MEN t r i ~ l e  bond 1s one of the strongest " 

metal-ligand bonds (14) ,  and its formation 
clearly provides the ther~nodyna~nic driv- 
ing force for the N,  cleavage reaction 
elucidated here. A lower liinit for the 
hlo-N dissociation enthalpy of -472 kJ 
mol-' is suggested by the overall transfor- 
mation 1 + 0.5 N2 + 3,  in view of the 

enthalpy of dissociation of N2  (944 kJ 
mol-') (15). Monomeric M o ( N R A ~ ) ~  (1 )  
is formally related to the well-known 
dirneric hlo(II1) conlplexes X,Mo-MoX, 
(X = alkyl, amide, alkoxide), w h ~ c h  have 
unbridged metal-metal triple bonds (16) .  
Severe steric col~straints (see Fig. 1)  ap- 
parently rei~der 1 Immune to dimerization, 
endowing the co~nplex with the stored 
energy required for the observed reactivity 
toward Nz.  

Our work establ~shes the reductive 
cleavage of Nz to two nitrido (N3-)  ligands, 
mediated by a soluble transition-metal com- 
plex of known structure. T h ~ s  system has 
permitted a spontaneous transition-metal- 
mediated Nz  cleavage process ( 2  -+ 3 )  to be 
studied (17, 18). 
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CD1 Recognition by Mouse NKv T Lymphocytes 
Albert Bendelac,* Olivier Lantz,f Mary E. Quimby, 

Jonathan W. Yewdell, Jack R. Bennink, Randy R. Brutkiewicz 

Rare major histocompatibility complex (MHC) class l-like CD1 -specific T cells have been 
isolated from human blood, but it has not been determined whether these clones are part 
of a defined subset of CD1 -specific T cells selected during T cell development, or whether 
their recognition of CD1 is a fortuitous cross-reaction. In mice, an entire subset of a(3 
thymocytes with a unique phenotype was found to be CD1-specific. This particular 
subset, and its human counterpart, provide evidence that CD1 has a general role in 
selecting and interacting with specialized a(3 T cells. 

Mouse NK1 + T cells constitute up to 20% 
of the mature compartment of the thymus 
and are also found in most peripheral tis­
sues, with particular frequency in bone mar­
row and liver (1-7). They consist of CD4+ 

and CD4~8~ double-negative (DN) cells. 
Unlike other T cells, NK1 + T cells express 
the surface receptors normally associated 
with natural killer (NK) cells, including 
NKR-P1 and Ly-49, and they can lyse NK-
sensitive target cells (8). In addition, they 
have the unique ability to secrete large 
amounts of cytokines, especially interleu-
kin-4 (IL-4), upon primary stimulation 
through their a p T cell receptors (TCRs) 
in vitro (1, 5, 7) and in vivo (9). Because 
this secretion of IL-4 is rapid, NK1 + T cells 
are likely to promote the differentiation and 
recruitment of T helper 2 (TH2) cells over 
TH1 cells in immune responses in which 
they are engaged (10). Elucidating the con­
tribution of these specialized T cells thus 

depends on the identification of their TCR 
ligands. 

Several findings have suggested that the 
ligand is a nonpolymorphic MHC class I 
molecule that is conserved in different spe­
cies. First, thymic selection of NK1 + T cells 
depends on the expression of P2-micro-
globulin (P2M) (2,4) and thus, by impli­
cation, on the expression of class I mole­
cules. Second, the TCR repertoire of both 
CD4+ and DN NK1 + T cells is largely 
restricted to TCRs comprising a single, in­
variant TCRa chain, Va14-Ja281, paired 
with Vp8, Vp7, or Vp2 TCRp chains (11). 
Third, the same TCR repertoire exists in 

V J 4 -
chains 

different strains of mice, regardless of MHC 
haplotype (11). Fourth, a human counter­
part to this subset exists that uses TCRs 
comprising an invariant TCRa chain, 
Va24-]aQ (the homolog of mouse 
Ja281), paired with V p l l TCRp 
(homologs of mouse Vpo) (11, 12). 

A clue to the identity of the NK1 + T cell 
ligand is the ligand's tissue distribution. Ex­
pression of P2M on bone marrow-derived 
cells, but not on thymic epithelium, enables 
thymic selection of NK1 + T cells (2, 4). 
The relevant bone marrow-derived cell is 
probably a thymocyte rather than a dendrit­
ic cell or macrophage, because mice with 
severe combined immunodeficiency disease 
that were inoculated with P2M-deficient fe­
tal liver cells did not generate NK1 + T cells 
(although they developed mainstream T 
cells), even though their thymic dendritic 
cells were largely P2M-positive (13). In ad­
dition, NK1 + T cells induce cytolysis of 
cortical thymocytes (14). These findings 
suggest that immature thymocytes express 
the NK1 + T cell ligand, whereas thymic 
epithelial cells and professional antigen-pre­
senting cells (APCs) do not. This pattern 
fits that of the TL and CD1 gene families, 
which, in contrast to classical MHC class I 
molecules, are mainly expressed by imma­
ture CD4 + 8 + thymocytes (15, 16). 

Table 1 . Recognition of an MHC class I ligand by DN32.D3, a N K 1 + T cell-derived hybridoma. 
Duplicate samples of DN32.D3 hybridoma cells (3 x 104) were cultured with 5 x 105 cells from the 
thymus, spleen, or bone marrow of the indicated mouse strains in 96-well flat-bottom microplates for 
a period of 20 to 24 hours. IL-2 released in the supernatant was measured in units per milliliter, where 
1 U/ml corresponds to 3 pM recombinant human IL-2 as measured by CTLL indicator cells (1). Mean 
values for duplicate samples are given. Standard errors were less than 20% of this value. Purified 
F23.2 mAb-to Vp8.2 was used at 1 -jxg/ml, versus the.same concentration of 28.8.6S, an isotype-
matched mAb to H-2KbDb. These results were confirmed in two to five separate experiments. 
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with Vp8, Vp7, or Vp2 TCRp chains (11). 
Third, the same TCR repertoire exists in 

V J 4 -
chains 

• T cell 

different strains of mice, regardless of MHC 
haplotype (11). Fourth, a human counter­
part to this subset exists that uses TCRs 
comprising an invariant TCRa chain, 
Va24-]aQ (the homolog of mouse 
Ja281), paired with V p l l TCRp 
(homologs of mouse Vpo) (11, 12). 

A clue to the identity of the NK1" 
ligand is the ligand's tissue distribution. Ex­
pression of P2M on bone marrow-derived 
cells, but not on thymic epithelium, enables 
thymic selection of NK1 + T cells (2, 4). 
The relevant bone marrow-derived cell is 
probably a thymocyte rather than a dendrit­
ic cell or macrophage, because mice with 
severe combined immunodeficiency disease 
that were inoculated with P2M-deficient fe­
tal liver cells did not generate NK1 + T cells 
(although they developed mainstream T 
cells), even though their thymic dendritic 
cells were largely P2M-positive (13). In ad­
dition, NK1 + T cells induce cytolysis of 
cortical thymocytes (14). These findings 
suggest that immature thymocytes express 
the NK1 + T cell ligand, whereas thymic 
epithelial cells and professional antigen-pre­
senting cells (APCs) do not. This pattern 
fits that of the TL and CD1 gene families, 
which, in contrast to classical MHC class I 
molecules, are mainly expressed by imma­
ture CD4 + 8 + thymocytes (15, 16). 

Table 1 . Recognition of an MHC class I ligand by DN32.D3, a N K 1 + T cell-derived hybridoma. 
Duplicate samples of DN32.D3 hybridoma cells (3 x 104) were cultured with 5 x 105 cells from the 
thymus, spleen, or bone marrow of the indicated mouse strains in 96-well flat-bottom microplates for 
a period of 20 to 24 hours. IL-2 released in the supernatant was measured in units per milliliter, where 
1 U/ml corresponds to 3 pM recombinant human IL-2 as measured by CTLL indicator cells (1). Mean 
values for duplicate samples are given. Standard errors were less than 20% of this value. Purified 
F23.2 mAb-to Vp8.2 was used at 1 -jxg/ml, versus the.same concentration of 28.8.6S, an isotype-
matched mAb to H-2KbDb. These results were confirmed in two to five separate experiments. 

Tissue source 
Stimulator cell strains and IL-2 production (U/ml) 

B6 B10.A BALB/c 129 B6.p2 

Thymus 

Thymus + anti-H-2KbDb mAb 
Thymus + anti-Vp8.2 mAb 

Thymus 
Spleen 
Bone marrow 

27 

32 
<2 

29 
0.5 
0.2 

Experiment 1 
20 

Experiment 2 

Experiment 3 

44 32 <1 

*B6.(32M~ mice bear a homozygous inactivation of their gene encoding (32M and were backcrossed eight times to 
C57BL/6. 
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