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Dinitrogen Cleavage by a Three-Coordinate
Molybdenum(lil) Complex

Catalina E. Laplaza and Christopher C. Cummins*

Cleavage of the relatively inert dinitrogen (N,) molecule, with its extremely strong N=N
triple bond, has represented a major challenge to the development of N, chemistry. This
report describes the reductive cleavage of N, to two nitrido (N37) ligands in its reaction
with Mo(NRAr),, where R is C(CD,),CH, and Ar is 3,5-CgH4(CH,),, a synthetic three-
coordinate molybdenum(lll) complex of known structure. The formation of an intermediate
complex was observed spectroscopically, and its conversion (with N=N bond cleavage)
to the nitrido molybdenum(VI1) product N=Mo(NRAr), followed first-order kinetics at 30°C.
It is proposed that the cleavage reaction proceeds by way of an intermediate complex in

which N, bridges two molybdenum centers.

The relatively inert dinitrogen molecule
(N,) composes 78% of the Earth’s atmo-
sphere; the development of this molecule’s
chemistry is clearly desirable if this im-
mense natural resource is to be utilized
optimally. In this regard, the discovery of
mild methods for scission of the N=N
triple bond represents a major challenge.
Although the metalloenzyme nitrogenase
constitutes a unique biological nitrogen-
fixing system (I) and the Haber-Bosch
ammonia synthesis is an example of indus-
trial nitrogen fixation (2), little molecu-
lar-level detail is available concerning the
critical N, cleavage processes operative for
either of these processes. Well-character-
ized synthetic systems capable of splitting
N, have been elusive (3), despite the mul-
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titude of known transition-metal com-
plexes containing intact dinitrogen as a
ligand (4). In connection with a study on
cleavage of the N-N bond in nitrous oxide
(N,O), Laplaza et al. reported (5) the
synthesis and structural characterization of
the three-coordinate Mo(Ill) complex
Mo(NRAr); [1, where R = C(CD;),CH;
and Ar = 3,5-C;H;Me, (Me, methyl),
Fig. 1]. We now report the reductive scis-
sion of N, to two N~ ligands in its reac-
tion with 1. The reaction occurs in hydro-
carbon solution at low temperatures
(—35° to 30°C) and pressures (1 atm).
Purification of red-orange 1 consisted
of recrystallization under an Ar atmo-
sphere (ethyl ether, 0.1 M, —35°C).
When we attempted to purify 1 by recrys-
tallization under an atmosphere of N,, the
solutions (ethyl ether, 0.1 M, —35°C)
took on an intense purple color in less
than 45 min. Examination of the purple
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solutions by ?H nuclear magnetic reso-
nance (NMR) spectroscopy (6) revealed
that the signal at 64 parts per million
(ppm) for 1 was being replaced by a single
new peak at 14 ppm, attributable to the
purple species (2, Fig. 2). When we carried
out the reaction using pure 1 in toluene
(leaving all other conditions unchanged),
from which the complex crystallizes less
readily, complete conversion to 2 took
approximately 48 hours at —35°C. On
warming to 30°C, the purple solutions of 2
gradually became gold and lost their para-
magnetism. Removal of all volatile mate-
rial in vacuo left an amber crystalline res-
idue that dissolved readily in benzene-d
for 'H NMR spectroscopic analysis. The
'H NMR spectroscopy showed that a ter-
minal nitrido Mo(VI) complex (3, Fig. 2),
identical to the complex that we isolated

Fig. 1. Line drawing of the molecular structure of
Mo(NRAr), (1). The structure of 1 was determined
by x-ray crystallography (5).
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and characterized in conjunction with our
N,O study (5), had formed in essentially
quantitative yield.

In a preparative-scale experiment, the
nitrido complex 3 was isolated in 76%
recrystallized yield from the reaction of 1
(300 mg in 6 ml of toluene) with N, (1
atm) and was identical in all spectroscopic
and physical properties to samples of 3
prepared by other means (7). To verify un-
equivocally that the source of the nitrido
nitrogen atom was indeed N,, we carried out
the procedure under 15N (1 atm). Infrared
spectroscopy showed that N=Mo(NRAr),
(3-PN, frequency vy sy = 1014 cm™})
formed to the exclusion of unlabeled 3
(VMozn = 1042 cm™!), and a signal for
3-N was located at +840 ppm in the N

~WNRAr
ArRN— Mo (1)

~

NRAr

1 atm, -35°C 1
N
i
1

. (1eNy)
r
ArRN \
| NRAr
Mo(NRAr),
ArRN NRA
r
ArRN \. /
I:
i
N (2)
!
e M°{lu NRAr
' NRAr
30°C
typ =35 min
|T|
2 . 3)
"w
ArRN/ \ NRAr

NRAr

Fig. 2. Proposed sequence of reactions for the
conversion of Mo(NRAr), (1) to N=Mo(NRAr), (3) in
the presence of N, by way of the intermediate com-
plex 2; t, , is the half-life for the conversion of 2to 3.
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NMR [with reference (8) to external ni-
tromethane at +380.2 ppm]. Identical spec-
tral properties were found for 3-1°N prepared
independently (5) by treatment of 1 with
selectively labeled "NNN(p-C,H Me).

A reasonable supposition is that the
purple intermediate 2 is a dimolybdenum
complex with a bridging dinitrogen ligand,
as depicted in Fig. 2. Schrock and co-
workers have observed the formation of
purple paramagnetic dinuclear dinitrogen
complexes containing Mo(Ill) in a tri-
amidoamine coordination environment
and have verified their structural assign-
ment by x-ray crystallography in one case
(9). Symmetry considerations (10) indi-
cate that dinuclear systems of this sort
should be paramagnetic, with the two un-
paired electrons located in a degenerate
pair of delocalized Mo—-N-N-Mo 7 orbit-
als. As yet we have been unable to isolate
purple 2 to verify its structure by x-ray
crystallographic means, in part because of
its thermal instability with respect to 3.

The formation of purple 2 appears to
proceed more rapidly at —35°C than at
room temperature (~28°C); solutions of 1
(ethyl ether, 0.1 M) do not turn purple
when stored under N, (1 atm) at room
temperature for 2 to 8 hours, and conver-
sion to 3 is not appreciable (=5%) under
these conditions: The more rapid N, uptake
at —35°C is likely to be a manifestation of
the greater solubility of N, in organic sol-
vents with decreasing temperature (I11),
which would lead to greater equilibrium
concentrations of a mononuclear N, adduct
(N,)Mo(NRAr); (1:N,), the logical imme-
diate precursor to 2. Because the conversion
of dinuclear 2 to nitrido 3 could be moni-
tored by ZH NMR, we were able to verify
that the disappearance of 2 at 30°C is a
first-order process [rate constant k = (3.32
+ 0.13) X 107% s71; four runs]. This result
is expected for direct dissociation of a
dimeric entity into two monomeric units, as
postulated in Fig. 2 (2 — 3). The rate
constant at 30°C for conversion of 2-1°N, to
3-UN was indistinguishable [k = (3.16 =
0.32) X 10™*s7 % four runs] from the value
for unlabeled 2.

Four-coordinate molybdenum nitrido
complexes have been known for some time
(12), and the tris(amido) molybdenum ni-
trido complex N=Mo(NPh,); (Ph =" phe-
nyl), closely related to 3, has been shown by
x-ray crystallography to be monomeric in
the solid state (13). It is thought that the
M=N triple bond is one of the strongest
metal-ligand bonds (14), and its formation
clearly provides the thermodynamic driv-
ing force for the N, cleavage reaction
elucidated here. A lower limit for the
Mo=N dissociation enthalpy of ~472 k]
mol ™! is suggested by the overall transfor-
mation 1 + 0.5 N, — 3, in view of the
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enthalpy of dissociation of N, (944 k]
mol™!) (15). Monomeric Mo(NRAr); (1)
is formally related to the well-known
dimeric Mo(IlI) complexes X;Mo=MoX,
(X = alkyl, amide, alkoxide), which have
unbridged metal-metal triple bonds (16).
Severe steric constraints (see Fig. 1) ap-
parently render 1 immune to dimerization,
endowing the complex with the stored
energy required for the observed reactivity
toward N,.

Our work establishes the reductive
cleavage of N, to two nitrido (N°~) ligands,
mediated by a soluble transition-metal com-
plex of known structure. This system has
permitted a spontaneous transition-metal—
mediated N, cleavage process (2 — 3) to be
studied (17, 18).
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CD1 Recognition by Mouse NK1* T Lymphocytes

Albert Bendelac,* Olivier Lantz,¥ Mary E. Quimby,
Jonathan W. Yewdell, Jack R. Bennink, Randy R. Brutkiewicz

Rare major histocompatibility complex (MHC) class I-like CD1-specific T cells have been
isolated from human blood, but it has not been determined whether these clones are part
of a defined subset of CD1-specific T cells selected during T cell development, or whether
their recognition of CD1 is a fortuitous cross-reaction. In mice, an entire subset of of8
thymocytes with a unique phenotype was found to be CD1-specific. This particular
subset, and its human counterpart, provide evidence that CD1 has a general role in

selecting and interacting with specialized o8 T cells.

Mouse NK1* T cells constitute up to 20%
of the mature compartment of the thymus
and are also found in most peripheral tis-
sues, with particular frequency in bone mar-
row and liver (1-7). They consist of CD4*
“and CD478~ double-negative (DN) cells.
Unlike other T cells, NK1* T cells express
the surface receptors normally associated
with natural killer (NK) cells, including
NKR-P1 and Ly-49, and they can lyse NK-
sensitive target cells (8). In addition, they
have the unique ability to secrete large
amounts of cytokines, especially interleu-
kin-4 (IL-4), upon primary stimulation
through their a T cell receptors (TCRs)
in vitro (1, 5, 7) and in vivo (9). Because
this secretion of IL-4 is rapid, NK1* T cells
are likely to promote the differentiation and
recruitment of T helper 2 (T};2) cells over
Tyl cells in immune responses in which
they are engaged (10). Elucidating the con-
tribution of these specialized T cells thus
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depends on the identification of their TCR
ligands.

Several findings have suggested that the
ligand is a nonpolymorphic MHC class [
molecule that is conserved in different spe-
cies. First, thymic selection of NK17 T cells
depends on the expression of {,-micro-
globulin (B,M) (2, 4) and thus, by impli-
cation, on the expression of class I mole-
cules. Second, the TCR repertoire of both
CD4" and DN NK1* T cells is largely
restricted to TCRs comprising a single, in-
variant TCRa chain, V,14-]J,281, paired
with VB8, VB7’ or VBZ TCRP chains (11).
Third, the same TCR repertoire exists in
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different strains of mice, regardless of MHC
haplotype (11). Fourth, a human counter-
part to this subset exists that uses TCRs
comprising an invariant TCRa chain,
V,24-] . Q (the homolog of mouse V 14-
J,281), paired with V11 TCRB chains
(homologs of mouse VBB) (11, 12).

A clue to the identity of the NK1* T cell
ligand is the ligand’s tissue distribution. Ex-
pression of B,M on bone marrow-derived
cells, but not on thymic epithelium, enables
thymic selection of NK1* T cells (2, 4).
The relevant bone marrow-derived cell is
probably a thymocyte rather than a dendrit-
ic cell or macrophage, because mice with
severe combined immunodeficiency disease
that were inoculated with 8,M-deficient fe-
tal liver cells did not generate NK1* T cells
(although they developed mainstream T
cells), even though their thymic dendritic
cells were largely B,M-positive (13). In ad-
dition, NK1™ T cells induce cytolysis of
cortical thymocytes (14). These findings
suggest that immature thymocytes express
the NK1* T cell ligand, whereas thymic
epithelial cells and professional antigen-pre-
senting cells (APCs) do not. This pattern
fits that of the TL and CDI gene families,
which, in contrast to classical MHC class I
molecules, are mainly expressed by imma-

ture CD4787" thymocytes (15, 16).

Table 1. Recognition of an MHC class | ligand by DN32.D3, a NK1+ T cell-derived hybridoma.
Duplicate samples of DN32.D3 hybridoma cells (3 X 104 were cultured with 5 X 10° cells from the
thymus, spleen, or bone marrow of the indicated mouse strains in 96-well flat-bottom microplates for
a period of 20 to 24 hours. IL-2 released in the supernatant was measured in units per milliliter, where
1 U/ml corresponds to 3 pM recombinant human IL-2 as measured by CTLL indicator cells (7). Mean
values for duplicate samples are given. Standard errors were less than 20% of this value. Purified
F23.2 mAb-to V8.2 was used at 1.pug/ml, versus the.same concentration of 28.8.6S, an isotype-
matched mAb to H-2KPDP, These results were confirmed in two to five separate experiments.

Stimulator cell strains and IL-2 production (U/ml)

Tissue source

B6 B10.A BALB/c 129 B6.g,M*

Experiment 1

Thymus 27 20 44 32 <1
Experiment 2

Thymus + anti-H-2KPDP mAb 32

Thymus + anti-V,8.2 mAb <2
Experiment 3

Thymus 29

Spleen 0.5

Bone marrow 0.2

*B6.B,M~ mice bear a homozygous inactivation of their gene encoding B,M and were backcrossed eight times to
C57BL/6.
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