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The binding subunit of Escherichia coli heat-labile enterotoxin (LT-B) is a highly active oral 
immunogen. Transgenic tobacco and potato plants were made with the use of genes 
encoding LT-B or an LT-B fusion protein with a microsomal retention se$uence. The plants 
expressed the foreign peptides, both of which formed oligomers that bound the natural 
ligand. Mice immunized by gavage produced serum and gut mucosal anti-LT-B immu- 
noglobulins that neutralized the enterotoxin in cell protection assays. Feeding mice fresh 
transgenic potato tubers also caused oral immunization. 

Vaccines against cholera and other enteric 
diseases would be a major benefit to devel- 
oping countries where these diseases are 
often life threatening, especially in chil- 
dren. Efficacious vaccines must stimulate 
the mucosal immune system, leading to the 
production of secretory immunoglobulin A 
(IgA), a process better achieved by oral 
than by parenteral antigen delivery. Several 
particulate antigens, including both live 
and killed microorganisms, are effective oral 
immunogens (I ), whereas subunit or soluble 
antigens are often relatively inefficient (2). 

Enterotoxigenic Escherichia cob (ETEC) 
and Vibrio cholerae cause acute watery diar- 
rhea by colonizing the small intestine and 

Fig. 1. Expression of LT-B and LT-BSEKDEL in 
tobacco and potato plants. (A) The LT-B plant 
transformation vectors pLTB-110 and pLTK-110 
(6) comprised an NPT I I  expression cassette for 
kanamycin resistance and an LT-B expression 
cassette with CaMV 35s promoter, TEV 5'-UTR, 
and vspB 3' flank. In pLTK-110, DNA encoding 
the polypeptide SEKDEL was ligated 3' of the 
gene encoding LT-B for endoplasmic reticulum 
(ER) retention of the protein. (B) Amounts of re- 
combinant LT-B (pLTB-110) and LT-BSEKDEL 
(pLTK-110) in soluble protein extracts from leaves 
of independent tobacco transformants. (C) 
Amounts of recombinant LT-B (pLTB-110) and 
LT-BSEKDEL (pLTK-110) in soluble protein ex- 
tracts from microtubers (8) of independent potato 
transformants. Leaves or microtubers from plants 
transformed with a vector that did not contain a 
LT-B coding sequence were used as a control (C). 
The total soluble protein in samples was mea- 
sured with a Coomassie dye binding assay kit 
(Bio-Rad) with BSA as the standard. (D) Immuno- 
precipitation of rLT-B and rLT-B-SEKDEL from 
extracts of transgenic tobacco leaves. Immuno- 
precipitates with LT-Bspecific antibodies of un- 
boiled (-) samples and samples heated in a water 
bath at 95OC for 5 min (+) of radiolabeled tobacco 
leaves (13) were run on a 15% polyacrylamide gel 
(15). Plants expressing rLT-B (lanes 1 and 2), rLT- 
BSEKDEL (lanes 3 and 4), and a plant trans- 
formed with a vector that did not contain the LT-B 
coding sequence (lanes 5 and 6) are shown. The 
prestained low molecular mass protein standards 

producing one or more enterotoxins, in- 
cluding the heat-labile enterotoxin (LT) of 
ETEC (3). The structure of this multimeric 
cholera toxin-like protein was recently elu- 
cidated (4). It has one 27-kD Asubunit and 
a pentamer of 11.6-kD B (binding) subunits 
(LT-B). These are noncovalently linked 
into a very stable doughnut-like structure 
that binds to the GM, ganglioside that is 
present on the epithelial cell surface. Anti- 
body interference with binding of the B 
subunit to cells, thus blocking toxin activ- 
ity, is the basis of attempts to use the B 
subunit as a vaccine component (5). 

Two expression vectors (pLTB-110 and 
pLTK-110) were constructed (6) with the 

use of the gene encoding LT-B (Fig. 1A). 
Agrobucterium tumef& was used to trans- 
fer the constructs into tobacco (Nicotiunu 
tabacum cv. Samsun) and potato plants (So- 
lanum hcberosum, variety "Frito-Lay 1607") 
(7). Shoots were regenerated, transplanted 
to soil, and grown in lighted growth cham- 
bers. Antigen amounts in tobacco leaves 
and potato microtubers (8) were quantified 
by enzyme-linked immunosorbent assay 
(ELISA) based on ganglioside binding by 
LT-B (9) (Fig. 1, B and C). Because 
Agrobucterium-mediated transformation of 
plant cells results in random nuclear inser- 
tion of the transferred DNA (T-DNA) 
(1 O), individual transformants showed vary- 
ing amounts of gene expression. Maximum 
amounts of protein accumulation in pLTB- 
110 plants were up to 5 pg per gram of 
total soluble leaf protein (Fig. 1B) and up 
to 30 pg per gram of soluble protein in 
potato microtubers (Fig. 1C). Extracts 
from pLTK-110 plants showed significant- 
ly elevated accumulation in comparison 
with extracts from pLTB-110 plants (Fig. 
1, B and C). This suggests that the micro- 
soma1 retention signal SEKDEL (I I )  
caused cellular compartmentation of the 
fusion protein, thus facilitating oligomer- 
ization (12). The rLT-BSEKDEL accu- 
mulated in amounts up to 14 pg per gram 
of total soluble tobacco leaf protein and 
110 pg per gram of soluble potato micro- 
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Table 1. Neutralization of E. coli enterotoxin ac- 
tiv~ty by serum and mucosal extracts from mice 
orally immunized with transgenic tobacco leaf ex- 
tracts. The assay was conducted with the use of 
mouse Y-I adrenal cells In miniculture (18). Titer is 
def~ned as the rec~procal of the h~ghest serum or 
mucosal extract dilution show~ng complete neu- 
tralization of biolog~cal act~vity of 50 pg of tox~n. 
Values for serum and mucosal samples cannot be 
directly compared. 

Ant~body samples Titer 

Sera from mlce orally ~noculated 320 
with bacterially expressed rLT-B 

Sera from mlce orally ~noculated 320 
with transgenic tobacco leaf 
extract 

Mucosal extracts from mlce orally 51 20 
lnoculated w~th bacterially 
expressed rLT-B 

Mucosal extracts from mlce orally 51 20 
inoculated with transgenic 
tobacco leaf extract 

tuber protein, representing 0.01% of total 
protein. 

Immunoprecipitates from radioactively 
labeled leaves (1 3) of transformed tobacco 
plants were analyzed by SDS-polyacryl- 
amide gel electrophoresis (PAGE). A pro- 
tein band was observed in extracts from 
pLTB-110 plants (Fig. ID) that comigrated 
with bacterial rLT-B monomer (14). A 
slightly larger peptide was observed in 
plants expressing rLT-B-SEKDEL. The 
quantity of LT-B monomer in both samples 
increased when the sample was boiled be- 
fore SDS-PAGE, which suggests that the 
plant-derived antigens were at least partial- 
ly oligomerized in plant cells in a fashion 
similar to bacterial rLT-B (15). We verified 
the presence of an oligomeric form of rLT- 
B-SEKDEL from leaves by gel filtration on 
Sephacryl 200. The antigen eluted with an 
apparent molecular mass of 38 kD, which is 
similar to that of bacterial rLT-B pentamer 
( 14, 15). Because the rLT-B-SEKDEL pro- 
tein showed structural and binding proper- 
ties similar to those of rLT-B expressed in 
E. coli and accumulated in significantly 
greater amounts in plants than did rLT-B, 
we used pLTK-110 plants for all immuno- 
genicity studies. 

To determine oral immunogenicity, 
BALB/c mice were given a crude soluble 
extract from pLTK-110 tobacco leaves (1 6) 
by gavage. Each dose had 12.5 kg of antigen 
[as determined by LT-B ELISA (9)] and was 
administered on days 0, 4, 21, and 25. An- 
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Fig. 2. Oral lmmunogenic~ty In BALB/c mice from 
extracts of transgenic tobacco leaves expressing 
rLT-B-SEKDEL or rLT-B expressed in E. coli. 
Mice were gavaged with solutions containing 12.5 
kg of rLT-B on days 0 ,4 ,  21, and 25. On day 28, 
animals were killed, and serum (A) and mucosal 
(B) materials were examined by ELISA for the 
presence of antibodies to LT-B (9). 

other group of mice was given 12.5 kg of 
purified E.  coli-expressed rLT-B with the 
same gavage schedule. Serum and mucosal 
samples were collected on days 30 to 32, and 
antibody titers were examined by ELISA (9) 
for rLT-B-soecific antibodies. Amounts of 
serum antibodies were similar in the two 
groups (Fig. 2), which indicates that the 
plant-derived material retained immuno- 
genic properties of the bacterial rLT-B. Mu- 
cosal samples from mice immunized with 
tobacco rLT-ESEKDEL also showed anti- 
bodies to LT-B. Toxin neutralization assays 
showed the protective nature of these anti- 
bodies; serum and mucosal immunoglobulins 
from animals immunized with plant or bac- 
terially expressed antigen neutralized the bi- 
ological activity of LT to the same extent 
(Table 1). 

Individual pLTK-110 potato transfor- 
mants were clonally propagated and grown 
to maturity in soil. On  the basis of ELISA, 
a feeding of 5 g of tuber (one oral dose) was 
calculated to deliver 15 to 20 kg of rLT-B- 
SEKDEL, which can be consumed by a 
mouse in 2 to 6 hours. Mice that consumed 
pLTK-110 potato samples developed serum 
IgG and mucosal IgA that were specific for 
LT-B (Fig. 3). These responses were com- 
pared to those of animals immunized with 
20-kg doses of bacterial rLT-B by oral ga- 
vage. The immune response to the purified 
bacterial rLT-B was greater than to any of 
the transgenic potato samples. This may 
indicate that some factors in the plant limit 
or interfere with antigen reactivity with 
lymphoid tissue. Mice fed with the control 
(nontransformed) tubers developed no LT- 
B-specific antibodies in either serum or 
mucosal samples. 

The fact that feeding mice transgenic 
potatoes expressing a recombinant antigen 
caused an oral immune resoonse demon- 
strates the feasibility of using transgenic 
plants as expression and delivery systems for 
oral vaccines. We anticipate that an in- 
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Fig. 3. Oral immunogenicity in BALB/c mice from 
potato tubers expressing rLT-B-SEKDEL. Mice 
were fed 5 g of transgen~c tuber slices (transfor- 
mants 5, 6, 7 ,  and 81, control untransformed tuber 
slices (control), or 20 kg of bacterial rLT-B on days 
0, 4, 14, and 18. On day 28, an~mals were killed, 
and serum and mucosal materials were examined 
by ELISA for the presence of antibodies to LT-B 
(9). Titer IS defined as the reciprocal of the highest 
dilut~on to glve an optical absorbance (OD 405 
nm) 2 0.2. 

crease in recombinant orotein concentra- 
tion in the plant tissue will lead to an 
increased immune response. Other antigens 
expressed in plants may also act as oral 
immunogens (1 7); in separate studies (with 
Mary Estes of Baylor College of Medicine) 
we have found that the capsid protein of 
Norwalk virus can be expressed in either 
insect cells or plants, and it causes an oral 
immune response in mice. We conclude 
that there may be broad utility for trans- 
genic plants in production and delivery of 
subunit vaccines. 
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and S. sobrinus (2). Transgenic full-length 
Guy's 13 has been generated in N. tabacum 
plants and was found to be correctly assem­
bled (3). Modification of the heavy chain by 
replacement of its C73 domain with Ca2 
and Ca3 domains from an IgA-secreting hy-
bridoma (MOPC 315) did not affect the 
assembly or function of the antibody (IgA-
G) produced in transgenic plants (3). Pro­
tein immunoblot analysis (4) of the IgA-G 
plant extract with antiserum to the K light 
chain under nonreducing conditions showed 
a band of —210 kD, which is consistent with 
the presence of the extra constant region 
domains in the IgA-G antibody construct as 
compared with the original IgGl antibody 
(Fig. 1A, lanes 1 and 3). A number of small­
er proteolytic fragments were also detected, 
which is consistent with previous findings 
(3). A mouse J chain construct that consist­
ed of coding-length complementary DNA 
(cDNA) was amplified with synthetic oligo­
nucleotide primers corresponding to the 
NH2-terminal MKTHLL and the COOH-
terminal SCYPD sequences of the mouse J 
chain (5). The SC construct used in this 
study consisted of coding-length cDNA am­
plified with synthetic oligonucleotide prim­
ers corresponding to the NH2-terminal 
MALFLL sequence and the AVQSAE se­
quence near the COOH-terminus of rabbit 
plgR (6). Transgenic plants were then regen­
erated (7). 

The plants that expressed the J chain 
were crossed with those expressing IgA-G. 
The progeny showed a second major Ig band 
at ~400 kD, approximately twice the rela­
tive molecular mass of the IgA-G molecule 
(Fig. 1A, lane 4), which suggested that a 
dimeric antibody (dlgA-G) had been assem­
bled. Mature plants that expressed dlgA-G 
were crossed with a homozygous plant that 
expressed SC. The progeny plants (SIgA-G) 
included those that produced a higher mo-
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Four transgenic Nicotians tabacum plants were generated that expressed a murine mono­
clonal antibody kappa chain, a hybrid immunoglobulin A-G heavy chain, a murine joining 
chain, and a rabbit secretory component, respectively. Successive sexual crosses between 
these plants and filial recombinants resulted in plants that expressed all four protein chains 
simultaneously. These chains were assembled into a functional, high molecular weight 
secretory immunoglobulin that recognized the native streptococcal antigen l/ll cell surface 
adhesion molecule. In plants, single cells are able to assemble secretory antibodies, 
whereas two different cell types are required in mammals. Transgenic plants may be 
suitable for large-scale production of recombinant secretory immunoglobulin A for passive 
mucosal immunotherapy. Plant cells also possess the requisite mechanisms for assembly 
and expression of other complex recombinant protein molecules. 


