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Interannual and Interdecadal Variability in 335
Years of Central England Temperatures

G. Plaut, M. Ghil,* R. Vautard

Understanding the natural variability of climate is important for predicting its near-term
evolution. Models of the oceans’ thermohaline and wind-driven circulation show low-
frequency oscillations. Long instrumental records can help validate the oscillatory be-
havior of these models. Singular spectrum analysis applied to the 335-year-long central
England temperature (CET) record has identified climate oscillations with interannual (7-
to 8-year) and interdecadal (15- and 25-year) periods, probably related to the North
Atlantic’s wind-driven and thermonhaline circulation, respectively. Statistical prediction of
oscillatory variability shows CETs decreasing toward the end of this decade and rising

again into the middle of the next.

Low—frequency climate variability, interan-
nual and interdecadal, has been attributed
to changes in the oceans’ thermohaline cir-
culation (THC) or wind-driven circulation.
Multiple equilibria have been found in both
THC (1) and wind-driven circulation (2)
models. THC oscillates on scales of decades
to millennia (3), whereas wind-driven os-
cillations are seasonal (4) or interannual
(5). The strongest interannual climate sig-
nal is associated with the tropical El Nifio—
Southern Oscillation (ENSO) (6). The
ENSO does have global effects (7), but
their details are fairly uncertain at present
(8). To determine the extent to which ex-
tratropical oceanic phenomena or ENSO
affect climate variability in the northern
mid-latitudes, we examined the CET record
(9), the longest continuous instrumental
temperature record.

Interdecadal and interannual oscilla-
tions have been recognized (10-13) in
global or hemispheric temperature series of
shorter duration (14-16) by two indepen-
dent statistical techniques: singular-spec-
trum analysis (SSA) (10, 12, 17-19) and
the multitaper method (11, 20). Given the
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shortness of the series, these earlier results
are still controversial (21, 22). The CET
record (9, 23) now covers 335 years of
averaged monthly temperatures, starting in
January 1659 (24). Analysis of the CET
record should thus settle this controversy,
help determine the plausible causes of the
peaks that have been detected, and permit a
first glimpse at the secular variations of
interdecadal variability.

To facilitate comparison with global and
hemispheric analyses (10-13, 20-22), we
performed SSA on the yearly averages of
the CET record (23, 25). High-frequency
interannual variability, such as a quasi-bi-
ennial oscillation (26), stands out when the
monthly, rather than annual, CET data are
analyzed with a wide enough SSA window
(not shown); this variability is often related
to ENSO (6, 27). We concentrate here on
periods of 5 years and longer; use of a 1-year
sampling interval and M = 40 lags (17)
permits the study of periods between 5 and
40 years (19). Resolution increases with M,
whereas statistical significance decreases.
Window widths between 30 and 60 years
gave similar results.

A break appears in the singular-spec-
trum slope (Fig. 1A) at order k = 11. A
nonparametric Monte Carlo significance
test (19) confirmed that the record’s statis-
tical dimension is S = 11 (28). The first
two empirical orthogonal functions (EOFs)
(Fig. 1B) are a data-adaptive running mean
and its antisymmetric counterpart (10, 27).
Eigenvalues 3 to 11 form four pairs (skip-



ping k = 9), with the associated EOFs (Fig.
1, B and C) in quadrature. A bidecadal
oscillation dominates, because EOFs 3 and
4 have a period T of 25.0 years (Fig. 2). The
next pair (EOFs 5 and 6) still corresponds
to an interdecadal oscillation: Its spectral
density peaks near 14 years. The maximal
spectral intensity of EOFs 7 and 8 isat T =
7.7 years, whereas the last pair (EOFs 10

and 11; not shown) has T = 5.2 years.
These local CET peaks are in good agree-
ment with the global temperature peaks of
(10) and with those appearing in the stack
spectra (19) of the Intergovernmental Pan-
el on Climate Change (IPCC) record (15)
at 26.3, 14.5, 9.6, 7.5, 5.2, and 4.7 years.
The 5- and 15-year oscillations of Mann
and Park (11) are significant above 90%

Fig. 1. (A) Spectrum of the lag-co- A
variance matrix of the 335-year time
series of CET (9, 23). Eigenvalues § 10 f
are shown as percentages of the 5 fﬂﬂ
total variance; error bars are from g H{HHHH
Ghil and Mo (40), shown by (19) to 5 HH{HHHHHHHH
be conservative. (B) The four lead- u H
ing EOFs: The first two represent [ I I l [
the local temperature trend and 0 10 20 30 40
22% of the variance, The next two Order k
the 25-year oscillation and 10% of B
the variance. (C) The next four »
EOFs: pairs 5 and 6 (peak at 14 8
years, 9% of variance) and 7 and 8 e
(8 years, 7%). E
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Fig. 2. Stack spectra of the 2.0— 25.0 years
CET record, showing the to- it :g?ippo%véi:s 3and 4
tal power of the temperature — Components 5 and 6
time series (dotted line) 142years Components 7 and 8
along with the power in pairs 1.5 ~--- Components 10 and 11
3and 4, 5and 6, 7 and 8,
and 10 and 11. A fully con- @
sistent spectral approach, 8 7.7 years
combining SSA with the & 4.
maximum-entropy method 5 5.2 years
(MEM), vyields high-resolu- H
tion spectra with no spuri- o
ous peaks (19, 37). Each PC
(17), obtained by projecting 0.5
the record onto an EOF, has
a limited harmonic content,
allowing the use of low-or-
der MEM. Our results are 0.0 —ptpesppueponty
consistent with those of Fol- 0.05 0.10 0.15 0.20

land (47), who obtained a
23-year peak by applying

Frequency (year™)

high-order MEM to the raw Manley record (9). Stocker and Mysak (39) found, by the fast Fourier
transform, peaks at 24, 15, and 7.4 years, significant at 99%, 98%, and 95%, respectively, against a
red-noise process. The spectra of all the PCs sum to the total spectrum (79), as apparent from the partial
stack in the figure. To form a pair, (i) the difference 3f between the spectral peaks of the PCs k and k +
1,8 = [f, — f.q|, Where f is frequency, has to be small, 8f < 3/(8M); and (i) the combined variance of
the two PCs, at the frequency f *, where it is maximum, must exceed 2/3 of the total variance at f* (19).

Al four pairs in the figure satisfy both criteria (42).
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over Great Britain, whereas the decadal
oscillation of Allen and Smith (12) is only
significant in the tropical Atlantic.

The trend, based on the use of recon-
structed components (RCs) (17) 1 and 2
(light solid in Fig. 3A), clearly exhibits the
50-year temperature drop of almost 1°C
around the year 1700 often associated with
the Maunder Minimum (29). It also shows
that in central England, as in other parts of
the Northern Hemisphere (14, 15, 30), the
most recent warming appeared only in
1985, 10 years later than in the global
temperature trend (10, 14).

Interdecadal oscillations (heavy solid in
Fig. 3A) are based on RCs 3 to 6. They
have a peak-to-peak amplitude of over 1°C
in some parts of the record, with markedly
smaller excursions during the first half of
this century; in particular, they contribute
very little to CET variability during the first
major warming (1910 to 1940). An SSA of
the present century’s CET, like that of glob-
al temperatures in (21), produced no bidec-
adal pair. The bidecadal oscillations (RCs 1
and 2), however, dominate the combined
interdecadal and interannual variability
(heavy solid in Fig. 3B) in the complete
CET record, being strong and fairly regular
for more than two centuries. It is hard to
imagine that manipulation of the early data
alone (9, 23) could generate so regular a
bidecadal oscillation for over 200 years or
lead to a renewed oscillation since 1940.

Interannual oscillations (light solid in
Fig. 3B) are dominated by EOF pair 7 and 8.
The 8-year period of this pair is longer than
any thought to be associated with ENSO
(6, 7, 26, 27, 31), but periods of 9.1 years
(10) or of 7.5 and 9.6 years (19) also appear
in the global temperature records (14, 15).
EOF pair 7 and 8 is quite robust in the CET
record, as it appears with the same period-
icity in all subseries of sufficient length.
The last significant pair (EOF 10 and 11,
not shown), with T = 5 years, represents in
these extratropical temperatures (7) the
low-frequency component of ENSO (26,
27, 31, 32).

The ability of SSA to decompose a time
series as a sum of RCs with regular, spec-
trally band-limited behavior permits the use
of low-order, robust autoregressive (AR)
models to simulate and forecast each com-
ponent separately (19, 31). We studied the
predictability of the CET record by a series
of hindcast experiments and then issued a
temperature forecast into the next century.

Following the procedure given in (19),
we performed a series of hindcasts of length
1994 — Y and compared the extrapolated
RCs with the true ones; the AR model for
the hindcast is based on data up to year Y
(33) only. The two sets of predicted com-
ponents we consider are (i) the interdecadal
oscillations, EOFs 3 to 6, which have ap-
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proximately the same shape independent of
the final year Y, and (ii) the leading set of
EOFs, which describes 65% of the total
variance or more. The latter set includes

nonoscillatory components, and hence, less
skill is expected (19). We tested our statis-
tical forecast method against two bench-
marks (19): climatology and persistence. A
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Fig. 3. The RCs of the CET record. RCs provide optimal reconstruction of a dynamic process at precise
epochs (70, 19). They are not averages over the window width, as the PCs are; as a consequence, the
RCs have length N = 335, whereas the PCs have length N — M + 1 = 296. Hence, RCs are particularly

useful in real-time monitoring and prediction. (A) The

CET (23) time series (dotted curve) together with the

reconstructed secular trend (RCs 1 and 2, light solid line) and the trend plus interdecadal oscillations (RCs
1 through 6, heavy solid line); both RCs 3 and 4 (peak at 25 years) and 5 and 6 (peak at 14 years)
contribute to the latter. (B) The detrended temperature time series (raw data minus RCs 1 and 2, dotted
ling), the interannual component (RCs 7 and 8 and 10 and 11, light solid line), and the interannual plus
interdecadal oscillations (RCs 3 through 8 and 10 and 11, heavy solid line).

Fig. 4. (A) Percentage of AR fore-
casts that are better than climatol-
ogy (solid lines) or persistence
(dashed lines) for the interdecadal
oscillations (EOFs 3 through 6:
heavy lines) and for the leading
EOFs (65% of the variance or more:

Forecast skill

light lines). The latter set has, de-
pending on Y, between 11 and 13
EOFs; this number corresponds
approximately to the statistical di-

mension S(Y). (B) Leading RC fore-
casts, after the removal of the time-

Lag (years)

series average. The raw CET time
series (heavy solid line) is shown un-
til February 1993. Three forecasts
are illustrated, based on knowledge
up to 1989 (dashed line), 1991 (dot-
ted line), and 1993 (light solid line).
Cooling for the early part of the de-
cade was already forecast with the
1989 data (in agreement with the
Northern Hemisphere forecast of
(70, 12). All three forecasts indicate

Temperature variations (°C)
o
(4]
|

----1989 Forecast
-------- 1991 Forecast
— 1993 Forecast
= CET observed

that CET is warming for 1994 and
1995, but the warming is less than
the record levels attained in 1989

1970

| I 1
1990 2000 2010

Year

I
1980

and 1992, Forecasts based on a

training set starting in 1722, when the purely instrumental CET record (23) begins (not shown), differ from
those shown by a slight warming around the year 2000, visible as an inflection point in the figure.
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climatology forecast simply extrapolates the
RCs by 0, persistence by their last value.
We measure the skill by calculating, for a
given lead time 7, the percentage of fore-
casts that are closer to the true reconstruc-
tion than the climatology or persistence
(34).

Qur forecasts of the interdecadal oscilla-
tions are better than climatology up to 24
years ahead, and better than persistence up
to 33 years ahead (Fig. 4A). The skill versus
climatology drops rapidly at lead times of 1
to 3 years, after which it stays at values of
0.5 to 0.7 for a long time. AR predictability
drops faster when all leading components
are included: Climatology becomes more
skillful at lag 4 and persistence at lag 13.
The percentage versus climatology is also
between 0.5 and 0.6 after lag 5, indicating
that the sign of the anomalies is still fore-
cast correctly more than 50% of the time.

Forecasts of the significant components
1 to 11, which capture over two-thirds of
the variability, are in remarkably good
agreement with each other, whether we use
data up to February 1989, 1991, or 1993
(Fig. 4B, as well as those for 1990, 1992,
and 1994, not shown): They all predict a
local temperature rise for 1995-1996, a sub-
stantial decrease toward the end of the de-
cade, high temperatures in the middle of
the next decade, followed by even lower
temperatures near 2010. The predicted os-
cillations exceed by far any local green-
house warming effect expected by the year
2010 (15).

These forecasts concern only stationary
climate-system behavior—whether oscilla-
tory, chaotic, or stochastic—and not re-
sponses to suddenly or gradually shifting
external forcing. Volcanic eruptions do not
exhibit any marked regularity over the time
interval covered by the CET record, and
their main climatic effects seem to disap-
pear in 1 to 2 years (35). Thus, the surface-
air temperature impact of the Mount Pina-
tubo eruption in June 1991 is not included
in the 1989 prediction of Fig. 4B. Accord-
ing to a general circulation model simula-
tion of the expected impact (36), global
temperatures for years 1991 to 1993 should
have decreased by about 0.3° to 0.5°C, with
the maximum impact in late 1992. The
local effect of Mount Pinatubo aerosol
emissions over England is hard to evaluate
from such simulations. If this effect could
simply be added to internal climate vari-
ability, temperatures should have decreased
by about 0.5° to 1°C during these years
relative to 1990. The decrease was largest
for 1993 and rather less than simple addi-
tivity would have suggested. This finding
suggests that radiative cooling results from
general circulation models should be vali-
dated against temperature predictions, as
given here and based on internal variability



only, rather than against 30-year climatol-

ogy (36).

To return to plausible causes of the peaks

detected in the CET record, the ENSO peak
and the quasi-biennial oscillation (26, 27,
31) arise, by and large, in advanced models

of

the coupled atmosphere-tropical ocean

system (6, 37). The interdecadal peak at 15
years and the ENSO peak at 5 years were
confirmed by different methods in the in-
strumental record (11), as well as in a 137-
year isotopic proxy record (38). Peaks at 27
and 14 years are present, with 95% signifi-
cance, in the Koch index of sea-ice extent
off Iceland over 370 years (39), and a 17-year
peak is present in Philadelphia temperatures
over 230 years (39). THC model results em-
phasizing the North Atlantic should thus
contain interdecadal peaks near 15 and 25
years. Likewise, the non-ENSO interannual
peak at 7 to 8 years, observed also in U.S.

su

rface-air temperatures (27, 39) and in At-

lantic sea level heights (27), should be useful

in

verifying wind-driven model results for

the North Pacific and North Atlantic ocean
basins (2, 5).
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