
targeting sequence to be functional. Our 
studies suggest an additional level of inter- 
action between Sos and Sevenless that is 
independent of Drk, and may involve the 
PH domain contained within the NH,-ter- ' 
minus. In agreement with our results, Dro- 
sophila NCat and a construct including Cat 
and the PH domain activate Ras in mam- 
malian cell lines whereas Cat and CatC are 
inactive (18). Furthermore, our studies are 
consistent with, and provide further evi- 
dence for, an inhibitory role for the COOH- 
terminus proposed for mammalian Sos (21 ). 
Our results are consistent with a model in 
which a signal transfer particle (25) forms 
apically in the eye disc within which pro- 
teins interact with each other through mul- 
tiple domains, as is seen in transcription 
complexes. In this model, upon activation of 
the receptor, the inhibition of the catalytic 
domain of Sos by its COOH-terminus might 
be alleviated by Drk through its bipartite 
binding to Sos and to the tyrosine-phospho- 
rylated Sevenless protein. 
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Proteasome from Thermoplasma acidophilum: 
A Threonine Protease 

Erika Seemiiller, Andrei Lupas, Daniela Stock, Jan Lowe, 
Robert Huber, Wolfgang Baumeister* 

The catalytic mechanism of the 20s proteasome from the archaebacterium Thermo- 
plasma acidophilum has been analyzed by site-directed mutagenesis of the p subunit and 
by inhibitor studies. Deletion of the amino-terminal threonine or its mutation to alanine led 
to inactivation of the enzyme. Mutation of the residue to serine led to a fully active enzyme, 
which was over ten times more sensitive to the serine protease inhibitor 3,4-dichloroiso- 
coumarin. In combination with the crystal structure of a proteasome-inhibitor complex, 
the data show that the nucleophilic attack is mediated by the amino-terminal threonine 
of processed p subunits. The conservation pattern of this residue in eukaryotic sequences 
suggests that at least three of the seven eukaryotic p-type subunit branches should be 
proteolytically inactive. 

T h e  26s proteasome (1) is the central 
protease of the ubiquitin-dependent path- 
way of protein degradation (2). The  cata- 
lytic core of the complex is formed by the 
20.5 proteasome, a barrel-shaped particle of 
four stacked, seven-membered rings (3). 
The rings are formed by 14 different but 
related subunits, which fall into two fami- 
lies (4), with the a-type subunits forming 
the outer rings and the P-type subunits 
forming the inper rings of the complex (5). 
Some (,possibly all) P-type subunits contain 
a prosequence, which is cleaved autocata- 
lyrically during the assembly of the complex 
(6,  7). The  20s proteasome has also been 
detected in the archaebacterium Thermo- 
plasma acidophilum where it is of simpler 
composition, being formed by only two re- 
lated subunits, a and p, which have given 
their names to the eukaryotic subunit fam- 
ilies (8). The structure of the Thermoplasmy. 
proteasome has been determined to 3.4 A 

by x-ray crystallography, both unliganded 
and in co~nulex with N-acetvl-Leu-Leu- 
norleucinal '(9). Although I;roteasomes 
have not vet been described in other uro- 
karyotes, genolnic sequencing has revealed 
the existence of proteins in eubacteria that 
are significantly related to eukaryotic 
P-type subunits (10). One of these proteins, 
from the nocardioform actino~nvcete 
Rhodococcus sp., is part of a complex, high- 
molecular weight protease with a specificity 
similar to that of the Thermoplasma protea- 
some (1 1). 

The 20s proteasome of eukaryotes was 
initially characterized as a multicatalytic 
protease with chymotrypsin-like, trypsin- 
like, and peptidylglutamyl-peptide hydro- 
lase activities (12) and, on the basis of 
inhibitor studies, has more recently been 
proposed to contain up to five different 
proteolytic components (13). The lack of 
sequence similarity to other proteases (14) 
and the inconclusive nature of inhibitor 
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T h e  proteasome of Thermoplasma has 
only a single, chymotrypsin-like activity, 
although experiments with denatured sub- 
strates show that the enzyme hydrolyzes 
virtually any peptide bond (16) .  Assembly 
of the complex is guided by the ti subunits, 
which can also form rings in the absence 
of p subunits but remain entirely inactive. 
T h e  B subunits are monomeric in the ab- 
s e n d  of ti subunits, cannot catalyze the 
cleavage of the pro-peptide, and remain 
inactive; but if the pro-peptide is removed 
by genetic deletion, the P subunits form 
disordered aggregates and regain low but 
significant proteolytic activity (7) .  This 
result supported the assignment of the ac- 
tive site to the p subunits ( 1  7). O n  the 
basis of the hypothesis that the protea- 
some is a n  unusual kind of serine or cys- 
teine nrotease. all serine and histidine res- 
idues i n  the ~hermoplasma P subunit have 
been mutated individuallv without sienif- 
icantly impairing proteolytic activity ( the  
subunit contains n o  cvsteine) (18) .  In 
combination with previous studies ( 14,  
15), this result showed that the protea- 
some does not belong to any of the four 
known classes of proteases. 

In general, active site residues of en- 
zymes can be identified by the conserva- 
tion patterns of aligned sequences. This is 
because related proteins retain the same 
basic three-dimensional fold and function- 
ally important residues, long after evolu- 
tionarv divergence mav have led to  a ran- 
domization of the amiAo acid sequence at  
nonessential positions (19). Proteasome 
sequences are significantly related by sta- 
tistical criteria ( l o ) ,  indicating that all 
proteasome suhunits belong to one protein 
family and will therefore assume the same 
basic fold. This extrapolation from se- 
quence conservation to structural similar- 
itv is borne out bv the crvstal structures of 
the ~herrnoplasmd ti and I j  suhunits, which 
are siomilar (root-mean-square deviation 
1.33 A )  despite only 26's sequence iden- 
tity (9 ) .  T h e  structural conservation im- 
plies that those subunits that have re- 
tained proteolytic activity should all func- 
tion by the same catalytic mechanism be- 
cause evolution of a different mechanism 
would have caused large changes in  the 
active-site geometry and thus also in the 
three-dimensional scaffold. This imnlica- 
tion does not contradict the observation 
that eukaryotic proteasomes have multiple 
specificities because substrate specificity 
appears not to be determined by the cat- 
alytic mechanism but by the structure of 
the substrate binding pocket. 

A n  alignment of P-type sequences from 
Thermoplasma and eukaryotes (Fig. 1 )  shows 
that, apart from glycines, the only com- 
pletely conserved residue is Asp", which is 
also conserved in all a-type subunits. This 
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Fig. 1. Alignment of p-type subunit sequences. For subunits in which the site of processing is known, only 
the mature sequences are shown. The seven eukaryotlc subunit branches are represented by human 
sequences (Hs).  The constitutively expressed subunits 6 and E can be replaced after interferon y 
st~mulat~on by the closely related MHC-encoded subunlts LMP2 and LMP7 (22). A similar relationship 
connects the closely related and MECLl subunlts (23); for a, only the NH,-termlnal sequence IS known. 
The numbering and secondary structure (H,  a-helix; S, p strand) refer to the Thermoplasma sequence 
(Ta). For Mycobacterium leprae (MI) PrcB, the presumed mature form is shown ( 7  1). The HslV-related 
proteins are represented by the Escherichia coli sequence (Ec). Residues highlighted in reverse type are 
conserved In at least eight of ten branches of P-type subunits, as deflned by the dendrogram In Fig. 2; MI 
PrcB and Ec HslV are considered different branches. Shaded residues are conserved In five of ten 
branches. Single-letter abbreviations for the amino acid residues are: A, Ala; C, Cys; D, Asp; E, Glu; F, 
Phe; G, Gly; H ,  His; I ,  Ile; K, Lys; L, Leu; M ,  Met; N ,  Asn; P, Pro; Q, Gln; R ,  Arg; S, Ser; T, Thr; V, Val; W, 
Trp; and Y, Tyr. 

residue has been mutated to asparagine in 
Thermoplasma P with the surprising result 
that the proteolytic activity of the mutant 
proteasome was three times greater (18). 
Because Asp" is not required for catalytic 
activity and no other potential nucleophile 
is entirely conserved, we conclude that not 
all eukar~otic  P-type subunits are proteo- 
lytically active. 

Pote~itial nucleophiles that are highly 
but not entirely conserved are found in two 
regions of high sequence similarity between 
eukaryotic and eubacterial P-type sequenc- 
es (10); these regions are ( i )  the NH2- 
terminal 30 residues of mature subunits and 
(ii) a Gl~SerGly  motif (Fig. 1) .  The poten- 
tial nucleophile in region (ii), Ser"" could 
be mutated without impairment of the pro- 
teolytic activity in Thermoplasma P (18). Of 
the potential nucleophiles in region ( i ) ,  the 

most conspicuous are two threonines 
present at the NH2-terminus of several pro- 
cessed eukaryotic subunits as well as in all 
bacterial suhunits. Deletion of the two 
threonines in Thermoplasma P or their mu- 
tation to alanine yielded proteasomes that 
were correctly folded and assembled but 
that were entirely inactive (20). Deletion or 
mutation of the NH2-terminal threonine 
alone was sufficient to yield this phenotype. 
Of 16 mutations introduced into the P sub- 
unit (18), partly in highly conserved posi- 
tions such as Asp", Ser12" and Serl",this 
mutation was the first to result in a loss of 
proteolytic activity. 

These results indicated that the NH2- 
terminal threonine contributes to the activ- 
ity of the proteasome, and we therefore test- 
ed whether serine could be substituted at 
this position. Surprisingly, the Thr1-Ser 
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Table 1. Klnet~c parameters of Suc-LLW-AMC 
(succinyl-leucyl-leucyl-valyl-tyrosyl-7-amido-4- 
methylcoumarin) hydrolysis. Activity was assayed 
by incubating 0.5 pg of purified proteasomes with 
ten different concentrations of substrate (0.01 to 
0.7 mM) for 15 or 30 min at 60°C (18). Values for 
V,, and K, were determined by direct linear 
plotting (24). For calculation of k,,, we assumed 
14 active sites per pariicle. Values for K, and kcat 
are averages of triplicate experiments in which the 
standard errors were 15 and lo%, respectively. 
For inactivation kinetics, purified protein (0.02 pM) 
was first incubated with eight different inhibitor 
concentrations [3,4-dichloroisocoumarin (DCI) 
0.01 to 0.1 mM; N-acetyl-leucyl-leucyl-norleuci- 
nal, (AcLLnL), 0.001 to 0.05 yM] for 60 min at 
20°C, and proteolytic activity was measured wlth 
100 pM Suc-LLW-AMC. The dissociation con- 
stant for the enzyme-inhibitor complex (KJ and the 
first-order rate constant for formation of inactive 
enzyme (k,) were determined by application of the 
direct linear plot method (24). Ko,,/[I] is given by 
k,/K, (25). Values are the averages of triplicate 
experiments in which the standard error was 
about 10%. 

Fig. 2. Dendrogram of p-type 
subunits. Bacterial branches 
are shown bold. The dendro- 
gram was calculated by dis- 
tance-based methods from 
the alignment in Fig. 1 as de- Hs-C5 
scribed (10). The labels "ac- 
tive" and "inactive" refer to 
the proteolytic activity de- 
duced from the conservation 
pattern of Thrl. The question 
mark for the N3 branch refers 
to the fact that subunlts in this 
family contain Thrl but lack 
potential proton acceptors- 
donors (or both) and may therefore also be inactive. 

group, frequently with a pK in the physi- 
ological range. Its function is to strip the 
proton from the active-site nucleophile, 
thus .initiating the attack, and then to 
donate the proton back to the leaving 
NH,-terminal group of the cleaved sub- 

proteolytic cleavage and forms a single- 
residue catalytic center with the hydroxyl 
group of the serine side chain. T h e  inter- 
action between the amino and hvdroxvl 
groups is mediated by a water molecule.' 

O n  the basis of the sequence conserva- 
tion of Thr', we have divided the eukary- 
otic P-type subunits into an inactive and a 
~otent ial ly  active group with regard to pro- 
teolytic activity. The  two groups segregate 
on different branches of a 20s subunit den- 
drogram (Fig. 2),  with N3-fype subunits 
occupying a middle position. N3-type sub- 
units contain Thr' but lack both potential 
nrotiin accentors-donors, L v ~ ~ ~ ,  and the free 

strate. Two possible proton acceptors-do- 
nors are hiehlv conserved in the notential- Parameter Inhibitor Wild Thrl-Ser 

type mutant c ,  , 
ly active p subunits: Lys33 and the amino 
erouo of Thr' .  Their involvement in ca- K, (PM) 85 68 

Kc,, (1 0-3 sec-l) 30 30 
V,, (pM sec-' 22 23 

PS-') 
Kob,/[Il AcLLnL 1 17,000 120,000 

(Mcl  secc') DCI 166 2,300 

L, 

talysis is supported by the crystal structure 
of the Thermoplasma P subunit (9),  which 
shows the Lys33 side chain in close prox- 
imity to Thr l .  W e  have explored the role 
of Lys33 in catalysis by mutating it to  

amino grou; at Thrl  and a;e therefore most 
likely also proteolytically inactive. This as- 

alanine and arginine. T h e  mutant protea- 
somes folded and assembled correctlv but 

mutant was fully active, and its kinetic 
parameters were essentially indistinguish- 
able from those of the wild-type enzyme 
(Table 1) .  Nevertheless, a n  effect of the 

remained entirely inactive. This iesult 
showed that Lvs33 is essential for function- 

signment is supported by the conservation 
pattern of two glycine-rich sequences, 
Gly128SerGly and Ser'6%lyGly, that are in 
direct oroximitv to the active-site residues 

a1 reasons, rather than structural reasons 
but did not clarifv whether Lvs33 is in- 
volved directly ik proton tiansfer or 
whether it serves to  nolarize the Thr l  ami- 

(9)  an2 are conserved in active subunits but 
not in N3 or in inactive subunits (Fig. 1) .  
The   re diction that three, maybe four, of 
the eubacterial P-type subunits are proteo- 
lytically inactive is entirely compatible with 
the available data. Thus, LMP2, LMP7, and 
their constitutive homologs 6 and E, belong 

mutation could be seen on  the sensitivity 
toward the serine protease inhibitor 3,4- 

no group. Both roles appear possible on  
the basis of the crvstal structure (9 ) ,  but 

dichloroisocoumarin; in  particular, the 
serine mutant was almost 15 times more 
sensitive to  this compound than the wild 
tvne was. From this result we conclude 

the more f a v o r a b l e ' p ~  of the ~ h r ~  amino 
group makes this the more likely primary 
acceptor-donor. T h e  geometry of its inter- 
action with the side chain hydroxyl group, 
either directly or mediated by water, is 
potentially quite favorable (9) .  T h e  Thr '  
NH,-terminus is freed bv cleavage of the 

, . 
that the side chain hydroxyl group of the 
NH2-terminal threonine provides the ini- 
tial nucleophilic attack in the wild-type 
enzyme. N o  effect of the serine mutant 
could be observed on  the sensitivitv to- 

to the active group, in concordance with 
their established role in proteasome activity 
(22). All three eukaryotic p-subunit 
branches that are predicted to be active 
contain a constitutive member and a inter- 
feron y inducible homolog; LMP2 is the 
inducible homolog of 6 (22), LMP7 of E 

(22), and MECLl of a (23). 

ward the inhibitor N-acetyl-Leu-Leu-nor- 
leucinal. In the proteasome crystal struc- 
ture (9),  this inhibitor is found in close 
proximity to the side chain of the NH2- 
terminal threonine, providing additional 
evidence for the role of the threonine 

pro-beptide in  ~ h e r m o ~ l a s m a  and in all 
eukarvotic subunits that contain this resi- 
due, Li th the exception of N3-type sub- 
units where processing occurs eight resi- 
dues prior to  Thr' .  In eubacterial subunits, 
the NH,-terminal residue of the mature 
form has only been determined for a sub- 
unit from Rhodococcus sp. (1 I ) ,  which is 
closely related in sequence (64% identity) 
to  Mycobacterium PrcB (Fig. 1 ) ;  this sub- 
unit also starts with Thr l .  

The  involvement of the Thr'  amino 
group in the catalytic mechanism of pro- 
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others were healthy, HIV-seronegative sub- 
jects. Of the 10 KS patients, three were not 
infected with HIV (Table 1). 

With the use of immunomagnetic bead 
selection (7), we have isolated cell subsets 
from the PBMC and localized the 
KS330Bam sequence primarily to the 
CD19+ B cell population (Table 1). No- 
tably, the CD8+ cells were negative. 
These findings are consistent with the 
presence of this sequence in some B cell 
lymphomas ( I ) .  Finally, in attempts to 
examine the possible route of transmission 
of this KS-associated virus, we examined 
cells and cell-free fluid from saliva and 

Fig. 1. Analysis of PCR amplified herpesvirus- 
like sequence. Total DNA from tissue or cells 
was amplified, and electrophoresis was per- 
formed on an agarose gel (2). M, DNA molecular 
weight marker. Lanes 1 and 2, tumor and control 
tissue from KS+ HIV+ patient; lanes 3 and 4, 
tumor and control tissue from KS+ HIV- pa- 
tient; lane 5, KS+ HIV+ PBMC; lane 6, KS+ 
HIV-PBMC; lane 7, KS-HIV-PBMC; lane 8, SLK 
line; and lane 9, positive control KS tumor tissue. 
Arrow indicates the mobility of the 233 base pair 
portion of the KS330Bam fragment. 
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