
trols the situation and will catch the ball, 
but he does not know when. This ex~la ins  
why fielders run into walls chasing uncatch- 
able fly balls and why they do not rush 
ahead to the ball destination point, choos- 
ing instead to catch the ball while running. 
The LOT model exnlains whv balls hit to 
the side are easier to'catch. ~ielders  can use 
their robust abilitv to discriminate curva- 
ture rather than resorting to their weak 
abilitv to discriminate acceleration 111. 
12). 1t is also an error-nulling method ;hat 
compensates for minor perceptual distor- 
tion or flight trajectory irregularity. In 
short, the LOT strategy provides a simple 
and effective way to pursue and catch a 
target traveling with approximately para- 
bolic motion in three-dimensional space. 
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Potentiated Necrosis of Cultured Cortical 
Neurons by Neurotrophins 

Jae-Young Koh, Byoung J. Gwag, Doug Lobner, 
Dennis W. Choi* 

The effects of neurotrophins on several forms of neuronal degeneration in murine cortical 
cell cultures were examined. Consistent with other studies, brain-derived neurotrophic 
factor, neurotrophin-3, and neurotrophin-4/5 all attenuated the apoptotic death induced 
by serum deprivation or exposure to the calcium channel antagonist nimodipine. Unex- 
pectedly, however, 24-hour pretreatment with these same neurotrophins markedly po- 
tentiated the necrotic death induced by exposure to oxygen-glucose deprivation or 
N-methyl-D-aspartate. Thus, certain neurotrophins may have opposing effects on differ- 
ent types of death in the same neurons. 

Four  related members of the neurotrophin 
family of growth factors have been identified 
to date: nerve growth factor (NGF), brain- 
derived neurotrophic factor (BDNF), neuro- 
trophin-3 (NT-3), and neurotrophin-415 
(NT-415) (1). These neurotrophins act on a 
set of high-affinity receptor tyrosine kinases 
(2)-TrkA, TrkB, and TrkC-to promote 
survival, differentiation, and neurite exten- 
sion in many types of mammalian central 
neurons. In health, the survival-promoting 
effects of neurotrophins are probably medi- 
ated by the antagonism of naturally occur- 
ring programmed cell death. This death gen- 
erally occurs by apoptosis, characterized by 
cell volume loss, membrane blebbing, chro- 
matin condensation. and DNA fra~menta- 

L. 

tion (3). Some programmed cell death can 
be inhibited bv transcriwtion or translation 
inhibitors, which sugges;s that expression of 
active "death proteins" is required (4). 

Neurotrophins can also attenuate the 
watholo~ical neuronal death induced bv dif- 
ierent ksults. For example, they inhibit 
several forms of axotomy-induced death, an 
apoptotic death that most likely reflects the 
failure of target-supplied trophic factors to 
reach the cell body. The degeneration of 
basal forebrain cholinergic neurons that re- 
sults from fimbria-fornix lesions can be 
blocked by administration of BDNF or NGF 
(5) ,  and the degeneration of axotomized ~ , ,  " 

spinal motoneurons can be blocked by ad- 
ministration of BDNF (6). 

In addition, neurotrophins (7) as well as 
other growth factors 18) can reduce the neu- " , , 

ronal death induced by exposure to excito- 
toxins, glucose deprivation, or ischemia. 
These deaths are thought to occur by necro- 
sis, a process morphologically distinguishable 
from apoptosis and characterized by promi- 
nent early cell swelling (3). Thus, it is widely 
held that the survival-promoting properties 
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of neurotrophins are extensive, perhaps in- 
volving interference with iniurv mechanisms 
comm:n to both apoptosis and necrosis (9). 

However, recent studies suggest that 
apoptosis itself may occur in paradigms in- 
volving excitotoxins or oxygen-glucose dep- 
rivation. Morphological changes and DNA 
fragmentation consistent with apoptosis 
have been described in 3-dav-old cultured 
cortical neurons exposed to &tamate (1 0) 
and adult cortical neurons at the ~eriwherv 

L L ,  

of focal ischemic insults in vivo (1 1). In 
addition, the protein synthesis inhibitor cy- 
cloheximide has been shown to reduce hy- 
ooxic neuronal death in rodents and in cor- 
tical cultures in which excitotoxicity has 
been pharmacologically blocked ( 12). We  
hypothesized therefore that the neuropro- 
tective effects of neurotro~hins mav be re- 
stricted to apoptosis. T o  test this, we deter- 
mined the effects of neurotrophins on mu- 
rine cortical cell cultures exposed to stimuli 
that induced apoptosis or necrosis. 

To  induce neuronal apoptosis, we trans- 
ferred near-pure neuronal cultures (Fig. 1A) 
to serum-deficient medium 11 3 ), resulting in , , " 

widespread neuronal degeneration over 24 
hours (Fig. 1, B and F). This type of neuro- 
nal death showed three features typical of 
apoptosis. (i) The neurons exhibited gradual 
cell body shrinkage (Fig. 1B); (ii) death was 
almost completely abrogated by the addition 
of cycloheximide (Table 1); and (iii) death 
was accompanied by the appearance of a 
DNA "ladder" upon agarose gel electro- 
phoresis (Fig. 1E) (1 4) .  Addition of BDNF, 
NT-3, or NT-415 to the bathing medium (all 
at 100 ng/ml) markedly reduced neuronal 
degeneration (Fig. 1, C and F). In contrast, 
NGF did not show any neuroprotective ef- 
fect (Fig. 1, D and F); a control experiment 
documented the ability of our NGF sample 
to rescue PC-12 cells from serum depriva- 
tion-induced death (1 5) .  

We also induced neuronal a ~ o ~ t o s i s  bv 
exposing mixed neuron-glia cultures to the 
dihydro~yridine calcium channel antagonist 
nimodipine, which resulted in neuronal de- 
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generation evolving slowly over 48 hours 
(1 6). Addition of BDNF, NT-3, or NT-415 
(all at 100 nglml) substantially reduced the 
frequency of this death, whereas NGF had 
no effect (Fig. 1G). 

To induce necrosis, we used oxygen-glu- 
cose deprivation (1 7). Exposure of mixed 
neuron-glia cultures to 60 min of oxygen- 
glucose deprivation produced acute swelling 
of neuronal cell bodies, followed by wide- 
spread neuronal death; no DNA ladder 
(Fig. 1E) or protection with cycloheximide 
was detected (Table 1). A deprivation pe- 
riod of 40 min induced little neuronal inju- 
ry in control cultures (Fig. 2, A and D) but 
produced marked acute neuronal swelling 
(Fig. 2B) and subsequent death in sister 
cultures treated with BDNF, NT-3, or NT- 
415 (Fig. 2D). Again, NGF treatment had 
no effect (Fig. 2, C and D). 

Because toxic Ca2+ influx has been 
shown to be a critical event in excitotoxic 
necrosis (1 a), we tested whether the necro- 
sis-potentiating effect of neurotrophins is ac- 
companied by increases in Ca2+ influx, as 
measured by the 45Ca2+ uptake assay (19). 
Although 24-hour pretreatment of cultures 
with BDNF (100 nglml) did not change the 
baseline 45Ca2+ uptake, it increased the 
45Ca2+ uptake induced by 40 min of oxygen- 
glucose deprivation (Fig. 3A). The selective 
NMDA antagonist MK-801 (10 pM) 
blocked this BDNF-induced increase in 
45Ca2+ uptake (Fig. 3A). BDNF-potentiated 
neuronal death after oxygen-glucose depri- 
vation was also blocked by the addition of 
MK-801 (10 pM), but it was not reduced by 
6-nitro-7-sulfamoylbe1l~0(~quinoxaline-2,3- 
dione (NBQX; 50 pM) (Fig. 3B), which is 
a selective a-amino-3-hydroxy-5-methyl- 
4-isolrazolepropionic acid (AMPA)- kain- 
ate antagonist. Similar neurotrophin-me- 
diated potentiation of necrosis was ob- 
served when NMDA was added directly 
to the cultures (Fig. 3C) (20). 

Table 1. Effect of cycloheximide on neuronal 
death, shown as the mean percent neuronal loss 
(+ SEM, n = 4) estimated by cell counting (serum 
deprivation) or LDH efflux assay (nimcdipine, oxy- 
gen-glucose deprivation, NMDA). Cycloheximide 
was present during and after the indicated insults. 

Neuronal loss (%) 

Treatment +Cycle- 
-Cycle- heximide 
heximide 

(1 pC$ml) 

Serum deprivation 6620.4 10+1.4' 
(24 hours) 

Nirnodipine 65 + 3.4 7 + 2.5' 
(50 pM, 48 hours) 

~ ~ e n - g l u m  52 + 3.9 53 + 3.8 
deprivation (60 min) 

NMDA (500 pM, 5 min) 69 + 2.5 67 2 3.5 

'Differences from the cultures without cyclohqMmide (P 
< 0.05). 

1 -i 
' ~ 

0 - 
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Fig. 1. Attenuation of neuronal apoptosis by neu- 
rotrophins. (A to D) Phase-contrast photomicro- 0 1 1 I 

graphs of near pure neuronal cortical cultures [7 Nirn. Nim. Nim. Nim. t Nirn. 
days in vitro (DIV 7)] in serum-containing medium alone + BDNF t NT-3 NT-415 t NGF 
(A) or 24 hours after serum removal (B). Addition of 
100 nglml BDNF (C), but not NGF (D), attenuated neuronal degeneration. Scale bar, 100 km. (E) DNA 
agarose gel electrophoresis reveals a ladder pattern 24 hours after serum deprivation (lane 2), but not 
after sham wash (lane 1) or oxygen-glucose deprivation (OGD) for 60 min (lane 3). DNA size markers 
were purchasedfrorn Gibco. (F) Percentage neuronal loss (mean + SEM, n = 16) 24 hours after serum 
deprivation (SD), without or with the indicated neurotrophins (all at 100 nglml). (G) Percentage LDH 
release (mean + SEM, n = 8) in mixed neuron-glia cultures (DIV 12) after 48-hour exposure to 50 pM 
nimodipine (Nim.) without or with the indicated neurotrophins (all at 100 nglml). Asterisks indicate 
differences from controls (P < 0.05, here and subsequently with a two-tail t test with Bonferroni 
correction). NGF (2.5s NGF-P) was purchased from Boehringer-Mannheim. 

The observation that BDNF, NT-3, and potentiate excitotoxic necrosis in the same 
NT-415 can protect cultured cortical neu- neurons. The lack of an effect with NGF is 
rons from apoptosis is consistent with many consistent with the expression of TrkB and 
previous observations. However, we docu- TrkC, but not of TrkA, in the mammalian 
ment here that the same neurotrophins can neocortex (21). The concentrations of 

Fig. 2. Potent~at on of neuronal 
ne-rosls by neurotrophlns. (A to 
C)  Pclase-convast pnotomicro- 
graohs of m~xed cult~res (DIV 
1Ll ~vmediarely after a 40-mtn 
exDosure to OGD, w~thout (A) or 
wfth 24-hour pretreatment wit? 
100 nglm~ BDNF (B) or NSF (C). 
Note ?he mar6edly swollen neu- 
ronal cell bodes in (B). Scale 
bar. 100 pm. fD) fLeC panel) 
Bars denote LDH release (mean 
+ SEM. o = 10 to 12) in sister cultures (DV 14). 24 Dso, 
hours after 40 min of OGD, without or with addi- 
tion of the indicated concentrations of BDNF (be- 
ginning 24 hours before OGD and present until the 
LDH measurement). (Right panel) Bars depict $ 
LDH release (mean + SEM, n = 8) in another set 
of sister cultures, 24 hours after 40 min of OGD, 
without or with 24-hour pretreatment with the in- 
dicated neurotrophins (all at 100 nglml). Asterisks 
denote differences from controls (P < 0.05). 

OGD BDNF (nglml) OGD NT-3 NT-4 NGF 

0.1 1 10 100 
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BDNF, NT-3, and NT-415 that potentiated REFERENCES AND NOTES 

T- 
BDNF BDNF BDNF + 

+ sham + OGD + OGD t OGD + OGD OGD + 
+ MK-801 + MK-801 NBQX 

Fig. 3. (A) 45Ca2+ uptake (mean + SEM, n = 
4) In mlxed cultures, dur~ng a 40-m~n exposure '80- 
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NMDA receptor-mediated Ca2+ influx. 
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f- 

- 
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Ca2+ channels (24), or intracellular free 
Ca2+ (25). Increased concentrations of in- 
tracellular free Ca2+ might be beneficial to 
cells undergoing apoptosis (26), but may also 
be detrimental to cells alreadv overloaded 
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