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Role of B61, the Ligand for the Eck Receptor
Tyrosine Kinase, in TNF-a-Induced Angiogenesis

Akhilesh Pandey, Haining Shao, Rory M. Marks,
Peter J. Polverini, Vishva M. Dixit*

B61, a cytokine-inducible endothelial gene product, is the ligand for the Eck receptor
protein tyrosine kinase (RPTK). Expression of a B61-immunoglobulin chimera showed that
B61 could act as an angiogenic factor in vivo and a chemoattractant for endothelial cells
in vitro. The Eck RPTK was activated by tumor necrosis factor-a (TNF-a) through in-
duction of B61, and an antibody to B61 attenuated angiogenesis induced by TNF-a but
not by basic fibroblast growth factor. This finding suggests the existence of an autocrine
or paracrine loop involving activation of the Eck RPTK by its inducible ligand B61 after
an inflammatory stimulus, the net effect of which would be to promote angiogenesis, a

hallmark of chronic inflammation.

The B61 protein is a glycosyl phosphati-
dylinositol (GPI)-linked TNF-a—, interleu-
kin-18 (IL-1B)-, and lipopolysaccharide
(LPS)-inducible endothelial gene product
that can also exist in a soluble form (1, 2).
We have produced a B61-immunoglobulin
(B61-Ig) chimera (3) that consists of the Fc
region of human IgG1 fused to the COOH-
terminus of B61 (minus the terminal 23
amino acids that are presumably cleaved
during GPI linkage). Because B61 is a cy-
tokine-inducible molecule on endothelial
cells (1), we reasoned that its receptor Eck
(4) may also be expressed by endothelial
cells. A flow cytometric analysis using B61-
Ig chimera showed that human umbilical
vein endothelial cells (HUVECs) did ex-
press a B61 receptor (5). Metabolic labeling
of HUVECs and immunoprecipitation
analysis (6) showed that the B61-Ig chime-
ra but not a control-Ig (3) chimera precip-
itated a protein of ~130 kD from these cells
(Fig. 1A), which is in the same size range as
the Eck RPTK. To confirm that this was
Eck, we subjected the material immunopre-
cipitated with the B61-Ig chimera to immu-
noblotting (7) with an affinity-purified
polyclonal antibody raised against the
unique COOH-terminus of Eck (8). The
130-kD protein immunoprecipitated by the
B61-Ig chimera was the Eck RPTK (Fig.
1B), indicating the presence of Eck on en-
dothelial cells.

The B61-Ig chimera behaved as an ago-
nist and was capable of inducing Eck auto-
phosphorylation (7) (Fig. 1C). Although
B61 bound and activated Eck, it was also
possible that B61 could bind receptor ty-
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rosine kinases other than Eck on endothe-
lial cells. B61-Ig chimera failed to immuno-
precipitate any in vitro kinase activity after
Eck had been depleted (6) from HUVEC
lysates (Fig. 1D). Thus, Eck was the major
RPTK bound by B61 on endothelial cells.
Because the function of Eph-Eck RPTK
family members is unknown, we investigat-
ed whether B61-mediated Eck activation
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Fig. 1. Characterization of Eck RPTK on HUVECs.
(A) Metabolically labeled HUVEC lysates immuno-
precipitated (IP) with B61-Ig or control-Ig chimera
(6) as indicated. (B) Immunoprecipitation with
B61-Ig or control-Ig chimera as indicated followed
by protein immunoblotting (Blot) (7) with affinity-
purified antibody to Eck (anti-Eck) (8). (C) Treat-
ment of HUVECs with B61-Ig or control-Ig chime-
ra (each 1 pg/ml) as indicated. The cell lysates
were immunoprecipitated with anti-Eck followed
by immunoblotting with 4G10 anti-phosphoty-
rosine monoclonal antibody (anti-PT) (7). (D) In
vitro kinase assays (6) on lysates immunoprecipi-
tated with anti-Eck before (lane 1) or after Eck
(lane 2) depletion; supematant from lane 2 was
immunoprecipitated with B61-Ig (lane 3). Lysates
were directly immunoprecipitated with control-Ig
(lane 4).
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might modulate the angiogenic response;
first, because B61 is induced by the angio-
genic cytokine TNF-a, and second, because
B61 is up-regulated in an in vitro capillary
tube differentiation assay (9). To address
this possibility, we implanted B61-lg or
control-Ig chimera impregnated into Hy-
dron pellets into the normally avascular rat
cornea (10). An angiogenic response was
detectable with as little as 25 ng of B61-Ig
chimera (Fig. 2, A and B). No angiogenic
response was observed with the control chi-
mera (5). Additionally, angiogenesis in-
duced by the B61-Ig chimera could largely
be abolished by preincubation with protein
A-Sepharose to deplete the test sample of
Ig chimera (Fig. 2, A and B).

Angiogenesis encompasses elements of
endothelial cell proliferation [on which B61
has no influence (5)] and migration (11).
The effect of B61 on endothelial cell mi-
gration was examined. Chemotaxis assays
on bovine adrenal capillary endothelial
(BCE) cells were carried out in a modified
Boyden chamber microwell assay system
(12). The B61-Ig chimera at doses as low as
1 ng/ml was able to induce migration of
these endothelial cells (Fig. 2C). On a mo-
lar basis, the response was similar to that of
basic fibroblast growth factor (bFGF). No
chemotactic response was observed with
the control-Ig chimera (5). A checkerboard
analysis was carried out to confirm that the
response was chemotactic as opposed to
chemokinetic (Table 1). This chemotactic
response as expected was inhibited by pre-
incubation of the B61-Ig chimera with pro-
tein A-Sepharose (5).

Tumor necrosis factor—a, a pleiotropic
cytokine, has powerful catabolic and
proinflammatory effects (13). Low doses
(0.01 to 10 ng) of TNF-a induce angio-
genesis in vivo in the absence of an in-
flammatory infiltrate (14, 15). The angio-
genic action of TNF-a may arise from the
direct stimulation of endothelial or stro-
mal cells resulting in the release of sec-
ondary mediators. In particular, prosta-
glandins (15) and platelet-activating fac-
tor (16) have been proposed to mediate

Table 1. Checkerboard analysis of the response
of BCE cells to B61 (12). Data are presented as
the number of cells that migrated through the filter
in 10 high-power fields (magnification, X400) after
2 hours of incubation. Each point represents the
mean of values derived from three independent
experiments.
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Fig. 2. (A) B61 induces corneal neovascularization.
Angiogenic activity was assayed in the rat corneas as
described (70). Colloidal carbon-perfused cormeas
are shown 7 days after implantation of a Hydron pellet
containing medium alone, bFGF (50 ng), B61-Ig (25

ng), or B61-lg sample depleted with protein
A-Sepharose. (B) Summary of comeal neovascular-
ization (710). Comeas implanted with Hydron pellets
containing the indicated factors were observed for 7
days. A positive neovascularization was recorded
only if sustained directional ingrowth of capillary

B61-lg depleted with protein A

Proportion of
Sample ng/pellet positive responses (%)
Medium alone 0/3 0)
bFGF 50 5/5 (100)
B61-ig 5 2/3 (66)
25 4/4 (100)
50 4/4 (100)
Control-ig 5 0/4 (0)
25 0/3 (0)
50 0/3 (0)
BE1-lg— 5 0/3 (0)
depleted 25 1/5 (20)
sample 50 1/5 (20)
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sprouts and hairpin loops toward the implant was observed. Negative responses were recorded either
when no growth was observed or when only an occasional sprout or hairpin loop displaying no evidence
of sustained growth was detected. (C) Chemotaxis of endothelial cells. Chemotactic response of BCE
cells to medium alone, bFGF (50 ng), or B61-Ig as indicated. Data are presented as the number of cells
that migrated through the filter in 10 high-power (magnification, X400) fields (HPF) after 2.5 hours of
incubation. Endothelial cell chemotaxis was performed in 48-well, blind well chemotaxis chambers
(Nucleopore Corp.) as described (72). Four replicates, 10 fields per replicate, were tested for each
sample, and experiments were repeated at least twice.

TNF-a-induced angiogenesis. Because
B61 is angiogenic, this result suggests that
the induction of B61 and subsequent ac-
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Fig. 3. TNF-a—induced Eck autophosphorylation is
inhibited by anti-B61. Results shown are represen-
tative of three independent experiments. (A) Quies-
cent HUVECs were either untreated (—), or treated
with TNF-a alone or TNF-a plus anti-B61  as indi-
cated (77). Cell lysates were immunoprecipitated
with anti-Eck followed by protein immunoblotting
with 4G10 antibody to phosphotyrosine (anti-PT)
(17). (B) Samples were treated as in (A) and were
metabolically labeled and immunoprecipitated with
anti-Eck (78). (C) Samples were treated as in (A)
and (B) and were metaboilically labeled and immu-
noprecipitated with anti-B61 (78).
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tivation of the Eck RPTK could be respon-
sible for the angiogenic effects of TNF-a.
To address this possibility, we first asked
whether TNF-a could induce Eck auto-
phosphorylation. As shown in Fig. 3, ex-
posure of HUVECs to TNF-a resulted in
activation of Eck RPTK as shown by its
autophosphorylation. This activation was
due to the induction of B61 because treat-
ment of HUVECs with TNF-a in the
presence of an antibody to B61 (anti-B61)

A

bFGF + anti-B61

TNF-a + anti-B61

(17) resulted in inhibition of Eck auto-
phosphorylation (Fig. 3). The TNF-a-in-
duced expression of B61 was restored to
baseline levels by the addition of anti-B61
(Fig. 3). Addition of a control antibody
had no effect on Eck autophosphorylation
or B61 expression (5). Thus, the level of
expression of B61 correlated directly with
the extent of autophosphorylation of the
Eck RPTK, whereas the absolute amount
of Eck remained unchanged (18) (Fig. 3).

To address directly the possibility that
B61 was responsible for the angiogenic po-
tential of TNF-a in vivo, we implanted into
rat corneas Hydron pellets impregnated
with TNF-a or bFGF with or without anti-
B61. TNF-a alone elicited an angiogenic
response, but simultaneous administration
of TNF-a and anti-B61 resulted in a greatly
attenuated angiogenic response (Fig. 4).
Anti-B61 administered alone had no effect
on vascularization in the cornea (5). Basic
FGF is a potent inducer of angiogenesis but
does not induce B61 (9). Consistent with
this, anti-B61 did not abolish bFGF-in-
duced angiogenesis (Fig. 4). Thus, B61 spe-
cifically mediated TNF-a— but not bFGF-
induced angiogenesis. The angiogenesis in-
duced by B61, like that induced by TNF-a,
was not accompanied by an inflammatory
infiltrate (Fig. 4).

We have shown that B61 is an angio-
genic factor and an endothelial chemo-
taxin. Addition of TNF-a induces activa-
tion of the Eck RPTK through the induc-
tion of its cognate ligand, B61. Because
B61 can exist in both cell surface-associ-
ated and soluble forms, activation of Eck
could potentially occur in an autocrine or
paracrine manner. This scenario is sup-
ported by the finding that an antibody to
B61 abolished TNF-a— but not bFGF-in-
duced angiogenesis, implying that activa-
tion of the Eck RPTK by its inducible
ligand, B61, is intimately involved in me-
diating TNF-a—induced angiogenesis. It is

_Proportion of
_Sample positive responses (%)

Medium alone o3 (0
bFGF 4/4 (100)
bFGF + anti-bFGF 013 (0)
bFGF + anti-B61 a3 (100)
TNF-a ¥3 (100)
TNF-a + anti-TNF-c¢ 0/3 (0)
TNF-u + anti-B61 16 (17

Fig. 4. TNF-a-induced angiogenesis is in-
hibited by anti-B61. (A) Colloidal carbon-
perfused corneas 7 days after implantation
of a Hydron pellet containing bFGF (50 ng),
TNF-a (25 ng), anti-B61 (10 pg) plus bFGF

(50 ng), or anti-B61 (10 wg) plus TNF-« (25 ng). Magnification, x35. (B) Summary of angiogenesis assays

performed as described (70).
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possible that B61 may also be responsible
in part for the angiogenic activities of
other proinflammatory factors.
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How Baseball Outfielders Determine
Where to Run to Catch Fly Balls

Michael K. McBeath,* Dennis M. Shaffer, Mary K. Kaiser

Current theory proposes that baseball outfielders catch fly balls by selecting a running
path to achieve optical acceleration cancellation of the ball. Yet people appear to lack the
ability. to discriminate accelerations accurately. This study supports the idea that out-
fielders convert the temporal problem to a spatial one by selecting a running path that
maintains a linear optical trajectory (LOT) for the ball. The LOT model is a strategy of
maintaining ‘“‘control” over the relative direction of optical ball movement in a manner that
is similar to simple predator tracking behavior.

Even recreational baseball outfielders ap-
pear to know virtually from the moment of
bat contact where to run to catch a fly ball.
In this task, the ball’s approach pattern
renders essentially all major spatial location
and depth cues unusable until the final
portion of the trajectory. Cues such as ste-
reo disparity, accommodation, image ex-
pansion rates, and occlusion help to guide
final adjustments in the interception path
(1, 2). During most of the task, the only
usable information appears to be the optical
trajectory of the ball (the changing position
of the ball image relative to the background
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scenery). Conceivably, outfielders could de-
rive the destination from an assumed pro-
jected parabolic trajectory, but research in-
dicates that observers are very poor at using
such a purely computational approach (3).
In addition, factors such as air resistance,
ball spin, and wind can cause trajectories to
deviate from the parabolic ideal (I, 4).
One proposed model is that outfielders
run along a path that simultaneously main-
tains horizontal alignment with the ball and
maintains a constant change in the tangent
of the vertical optical angle of the ball, tan
o (Fig. 1) (5-9). As the ball rises, tan «
increases, but at a rate that is a function of
the running path selected. If the fielder runs
too far in (so that the ball will land behind
him), d(tan «)/dt will increase. If he runs
too far out (so that the ball will land in
front of him), d(tan «)/dt will decrease.
The fielder can arrive at the correct desti-
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