
the nature of their silicate inclusions is 
quite diverse, ranging from "primitive" ob- 
jects (Techado) to highly differentiated ma- 
terials (Colomera). A previous model for 
the origin of IIE iron meteorites that argues 
for the mixing of silicates in a cooling metal 
pudding (26) is unable to explain the pres- 
ence of chondritic (unmelted) objects as 
inclusions in large masses of (molten) met- 
al. It has also been suggested that the sili- 
cates became incorporated into segregated, 
low-temnerature metallic melts that were 
separated by shock-induced shear transport 
(27). This model is supported by the evi- 
dence for a "nonmagmatic" origin of IIE 
metal 127). However, no shock effects 
(such as tnetal veins or silicates with undu- 
lating extinction) have been detected in 
the silicate inclusions. Although we cannot 
exclude the possihility that such effects 
were annealed during the subsolidus history 
of the breccias, the absence of shock fea- 
tures is in conflict with the suggestion that 
metal and silicates in IIE iron tneteorites 
were mixed by impact melting. Another 
view invokes impact mixlng of silicates 
with a metal core from a different parent 
hody (28). This model offers a plausihle 
exolanation for the unshocked nature of the 
silicates hut requires a magmatic origin of 
the metal. 

It seems necessary to call on the exis- 
tence of a partially melted H-chondrite as- 
teroid to account for the variety of silicate 
inclusions observed in different specitnens. 
Some areas of this hody may have preserved 
their primitive compositions (for example, 
the inclusion in Techado). and others he- , , 

came highly enriched in incompatihle ele- 
ments as a result of the fractionation of 
silicate magmas of tninitnurn melt composi- 
tion (represented hy trydimite and potassi- 
um feldspar crystals observed in Colomera 
and other IIE iron meteorites). It is possible 
that, as a consequence of partial melting, 
sulf~~r-rich metallic liquids locally segregat- 
ed and became intermingled with silicates. 
It is not likely, however, that such silicate 
objects could preserve their original metal 
and sulflde contents if immersed in such a 
metallic magma. Watson contains a good 
example of a silicate hody that was partially 
melted, losing essentially all its tnetal and 
troilite, but retained a relatively undifferen- 
tiated composition (8). Therefore, mixing 
of the metallic liquid and partially melted 
silicates must have been followed bv verv 
rapid cooling of the assetnblage in o h e r  tb 
oreserve the untnelted chondritic inclusion. 
It appears from the radiogenic ages that the 
"old" suhgroup IIE area of the parent hody 
was not substantially reheated by subse- 
quent impacts. Therefore, the inferred cool- 
ing rates (Fig. 2 )  imply that the hreccias 
were buried at a considerable depth in a 
megaregolith. Given that hreccia formation 
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burial at such depths tnay have occurred 20. "he s ~ c a t e  samples, a correcton of the "Ne/ 
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DNA Solution of Hard Computational Problems 
Richard J. Lipton 

DNA experiments are proposed to solve the famous "SAT" problem of computer science. 
This is a special case of a more general method that can solve NP-complete problems. 
The advantage of these results is the huge parallelism inherent in DNA-based computing. 
It has the potential to yield vast speedups over conventional electronic-based computers 
for such search problems. 

I n  a recent breakthrough, Adleman ( 1 )  
showed how to use hiological experiments 
to solve instances of the Hatniltonian path 
probletn (HPP): Given a set of "cities" and 
directed paths hetween thetn, find a direct- 
ed tour that starts at a given city, ends at a 
given city, and visits every other city exact- 
ly once. This problem is known to be NP- 
complete (2 ) ;  that is, all N P  problems can 
be efficiently reduced to it. A computation- 
al prohlem is in N P  provided it can he 
formulated as a "search" problem. Further, a 
probletn is NP-complete provided that if it 

Prnceton Unvers~ty, Princeton, NJ 08540, USA, E-mall: 
r]1@pr1nceton.edu 

has an efficient solution, then so do all 
problems in NP. One of the major achieve- 
ments of computer science in the last two 
decades is the understanding that tnany im- 
portant computational search problems are 
not only in N P  hut are NP-complete. An- 
other tnajor achievetnent is. the growing 
evidence that no general efficient solution 
exists for any NP-complete problem. 

Thus, Adleman's result that HPP can be 
solved by a DNA-based hiological experi- 
ment is exciting. However, it does not 
mean that all instances of N P  prohlems can 
be solved in a feasible way. Adletnan solved 
the HPP with brute force: He designed a 
biological system that "tries" all possible 
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tours of the given cities. The speed of any 
computer, biological or not, is determined 
by two factors: (i) how many parallel pro­
cesses it has and (ii) how many steps each 
can perform per unit time. For biological 
systems, the first of these factors can be very 
large: As little as 3 g of water contains 
approximately 1022 molecules. Thus, bio­
logical computations could potentially have 
vastly more parallelism than conventional 
ones. 

The second of these factors is very much 
in the favor of conventional electronic 
computers: A state-of-the-art supercom­
puter can easily do 100 million instructions 
per second; on the other hand, a biological 
machine seems to be limited to just a small 
fraction of a biological experiment per sec­
ond. However, the biological machine's ad­
vantage in parallelism is so huge that the 
difference in the execution time for one 
instruction is not a problem. 

However, even this advantage in paral­
lelism does not allow every instance of an 
NP problem to be solved feasibly: Even with 
1023 parallel computers, one cannot try all 
tours for a problem with 100 cities. The 
brute force algorithm is simply too ineffi­
cient. Biological computers can solve any 
HPP of, say, 70 or less edges. However, a 
practical issue is that there does not seem to 
be a great need to solve such HPPs. It is 
possible to routinely solve much larger 
HPPs on conventional machines (although 
a conventional machine will fail on some 
graphs of 100 nodes). 

One might be tempted to conclude that 
biological computations are only a curious 
footnote to the history of computing. This 
is incorrect; it is possible to use biological 
computations to speed up many important 
computations (3). In particular, the method 
of Adleman (1) can be extended in a way 
that allows biological computers to poten­
tially radically change the way that we do 
all computations, not just HPPs. I will show 
how to solve another famous NP-complete 
problem, the so-called "satisfaction" prob­
lem (SAT). In (3), I showed how to solve 
essentially any problem from NP directly. 
The goal here is to present the full details of 
the results first sketched in (3). 

SAT is a simple search problem that was 
one of the first NP-complete problems. 
Consider the formula 

F = (x\/y)A(x\/y) (1) 

The variables x and y are Boolean: They are 
allowed to range only over the two values 0 
and 1. Usually, one thinks of 0 as "false" 
and 1 as "true". Then, V is the logical OR 
operation (x\/ y = 0 only if x = y = 0), A 
is the logical AND operation (x A y = 1 
only if x = y = 1), and x denotes the 
"negation" of x (x is 0 if x = 1 and 1 if x = 
0). The SAT problem is to find Boolean 

values for x and y that make the formula F 
true. In this example, x = 0 and y = 1 
works, as does x = 1 and y = 0 , whereas x 
= y = 0 does not, nor does x = y = 1. 

The formula F consists of two clauses: 
The first is x V y, and the second is x V y. 
A clause is a formula that is of the form vx 

\J . . . \J vk where each vt is a variable or its 
negation. In general, a SAT problem con­
sists of a Boolean formula of the form C{ A 
. . . A Cm, where each Ct is a clause. The 
question is, then, to find values for the 
variables so that the whole formula has the 
value 1. This is the same as finding values 
for the variables that make each clause have 
the value 1. The reason for calling this 
problem the satisfaction problem is that 
making all of the clauses true is often called 
"satisfying" the clauses. The current best 
method essentially tries all 2n choices for 
the n variables. 

Our model of how DNA behaves is sim­
ple and idealized. It ignores many complex 
known effects but is an excellent first-order 
approximation (4). Strands of DNA are just 
sequences av . . . , ak over the alphabet {A, 
C, G, T}. Double strands of DNA consist of 
two DNA sequences, av . . . ,ak and p l 5 . . . , 
Pk, that satisfy the Watson-Crick comple­
mentary condition: For each i= 1,. . . , /c, aI} 

and pt must be complements, that is, A ^> T 
or C ^> G. Complementary sequences an­
neal in an antiparallel fashion, where 5' and 
3' refer to the chemically distinct ends of the 
DNA strands 

5' - a} - a2 - a3 . . . - 3 ' 

- X X X 
y - P - p2 - p3 . . . - 5' 

(2) 

There are a number of simple operations 
that can be performed on test tubes that 
contain DNA strands, (i) First, it is possible 
to synthesize large numbers of copies of any 
short single strand (here short is at least 20 
nucleotides, which is all that I will require). 
(ii) Second, it is possible to create a double 
strand of DNA from complementary single 
strands by allowing them to anneal, (iii) 
Third, given a test tube of DNA, one can 
extract those sequences that contain some 
consecutive pattern of length I Assuming 
that the pattern is 81} . . . , 8j, where each 8t 

is in {A, C, G, T}, a DNA strand av . . . , ak 

will be removed only if, for some i, 

&i = af, 82 = a, + b . . . , 8k = a, + k _ ! 
(3) 

I call this operation "extract." The reason I 
call this extract and not "separate," as oth­
ers have suggested, is that in practice the 
operation only extracts some of the required 
strands (a typical value might be 90%). 
Because the operation is not "complete," 
the term extract may be more suggestive. 
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Fig. 1. The graph Gn, which encodes two-bit 
numbers. 

(iv) Fourth, I assume that given a test tube, 
one can perform a "detect" operation. This 
operation simply determines whether or not 
there are any DNA strands at all in the test 
tube. It can be done by polymerase chain 
reaction (PCR) (4). (v) Finally, the last 
operation is called "amplify." This opera­
tion replicates all of the DNA strands in the 
test tube. [This operation was used in (3) 
but is not needed for the case of SAT.] 

In our computations, I will always start 
with one fixed test tube; it is the same for 
all computations. This is an advantage over 
the method in (1). The set of DNA in this 
test tube corresponds to the following sim­
ple graph Gn. The test tube is formed in the 
same way that Adleman (1) formed the test 
tube of all paths to find the Hamiltonian 
path. The graph Gn has nodes av xv xf

 v a2, 
x2, x'2, . . . , an+1 with edges from ak to both 
xk and x'k and from both xk and x'k to ak+l 

(Fig. 1). The paths of length n + 1 that 
start at ax and end at an+1 are assumed to be 
in the initial test tube. This graph is con­
structed so that all paths that start at ax and 
end at an+l encode an n-bit binary number. 
At each stage, a path has exactly two choic­
es: If it takes the vertex with an unprimed 
label, it will encode a 1; if it takes the 
vertex with a primed label, it will encode a 
0. Therefore, the path axx''a2ya3 encodes 
the binary number 01 (Fig. 1). 

Following (1), this graph is encoded into 
a test tube of DNA as follows. Each vertex 
of the graph is assigned a random pattern of 
length I from {A, C, G, T}. The length of I 
= 20, used in (1), should suffice here. This 
"name" of the vertex has two partst The 
first half is denoted by pI} and the second 
half by qt. Thus, p^ is the name associated 
with the ith vertex. Then, a test tube is 
filled with the following kinds of DNA 
strands: 

1) For each vertex, put many copies of a 
5' —» 3' DNA sequence of the form pft into 
the test tube. 

2) For each edge from i —> j , place many 
copies of a 3 ' —> 5' DNA sequence of the 
form 4ft (* denotes the sequence that is the 
Watson-Crick complement to x). 

3) Add a 3' —> 5' sequence of length 1/2 
complementary to the first half of the initial 
vertex to the test tube. Similarly, add a 3' 
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-+ 5 '  sequence complementary to the last 
half of the final vertex to the test tube (that 
is, add 0, and g,,). 

The key is that every legal path in G,, 
corresponds to a correctly tnatched se- 
quence of vertices and edges. Consider any 
path in the graph; it naturally consists of a 
sequence that alternates "vertex, edge, ver- 
tex, edge, . . . ." Suppose that v -+ u is an 
edge. Then, a path that passes through u 
and then u fits together like "bricks": 

V'U 

(4) 
The top 5 '  -+ 3' part consists of a series of 
"vertices." The hottom 3' -+ 5' part consists 
of a series of "edges." The vertex v is coded 
as pvqv, and the edge is (3$,,. The end of the 
vertex and the beginning of the edge can 
anneal because they are Watson-Crick com- 
plements. In the satne way, the end of the 
edge and the beginning of the next vertex 
can also anneal. Moreover, hecause the se- 
quences are chosen randomly, if 1 is large 
enough, then there is a high probability that 
no inadvertent paths will form. Thus, after 
annealing, there will be DNA encoding all 
of the paths through the graph; that is, it will 
encode all n-bit sequences. 

This graph has one more important 
property. All of the paths are "similar": 
Each is different only in whether it goes 
"left" or "right" at a particular stage. Thus, 
there is no reason to helieve that some 
paths will be tnore likely to appear than 
others. This is an important practical ad- 
vantage: If only 99'X of the paths are 
formed, then our method will have a 99'% 
chance of success. 

Operations are performed only on the 
DNA sequences from the graph G,. I use 
E(t, i, a)  to denote all of the sequences in 
test tuhe t for which the ith hit IS equal to a, 
for a in (0, I) .  This is done by performing 
one extract operation that checks for the 
sequence that corresponds to the name of x, 
if a = 1 and to the name of x', if a = 0. The 
lengths of these names are long enough that 
it is unlikely that this sequence will occur 
by accident somewhere else in the piece of 
DNA. In some of the constructions. I use 
the retnainder, that is, the strands that do 
not match the given pattern. Note that in 
all of the following, the strands of DNA can 
he assumed to be single strands. 

Before proving our general result, let's 
try the example F = (x v y )  A ( T  v 7) ( E y  
1). I construct a series of test tubes. The first 
one, to, is just the test tuhe of all two-hit 
sequences. Then, operate as follows: 

1) Let t, be the test tube that corre- 
sponds to E(t,, 1, 1). Let the remainder be 

Table 1. Values encoded by the DNA in the test 
tubes during the biological solution of Eq. 1 

Test tube Values present 

Fig. 2. A simple contact network. This network IS 

satisfied only if w = 1 or x = y = z = 1 .  

t', and let t2 be E(tl,, 2, 1). Pour t ,  and t2 
together to form t3. 

2) Let t, be the test tube that corre- 
sponds to E(ti, 1, 0). Let the remainder he 
t',. Let t j  be E(tt4, 2, 0). Again pour t4 and 
t j  together to fortn t,. 

3) Check to see if there is any DNA in 
the last test tube, t6. The satisfying assign- 
tnents are exactly those in this final test 
tube. 

To understand how this works, consider 
Table 1. Tuhe t, consists of all those se- 
quences that satisfy the first clause: 01, 10, 
11. In the satne way, t6 consists of all those 
from t, that satisfy the second clause: 01, 
10.   he latter are exactly the correct an- 
swers to the given SAT problem. 

Let's now turn to the general case. Any 
SAT nroblem on n variables and m clauses 
can be solved with at most order m extract 
stens and one detect steD. Bv "order m" I 

A ,  

mean that the numher of steps is linear in 
m. This assumes, as 1s usual, that each clause 
consists of a fixed number of variables or 
their negations. Let C,,  . . . , C,, he the 
clauses. A series of test tubes t,, . . . , t,, are 
constructed so that t, is the set of n-bit 
numbers x so that C,(x) = CL(x) = . . . = 
C,%(x) = 1, where CI(x) is the value of the 
clause C, on the setting of the variables to x. 
For to, use the set t,,ll of all possihle n-hit 
numbers. Assuming tk has been constructed, 
we construct t k + ,  Let C,%+, be the clause 

where each vI is a literal or a complement of 
a literal. For each literal vI, operate as fol- 
lows: If vz is equal to x,, then fortn E(t,,, j, 1); 
if it is equal to TI, then form E (t,,, j, 0). As 
in the example, the remainder of each ex- 
traction is used for the next step. Pour all of 

Fig. 3. The networks for formulas E v F and E A 
F. Here G is the network for E and H is that for F. 
(A) The OR case is constructed by connecting the 
networks in parallel and (B) the AND case is built 
by placing the networks in series. 

these together to fortn t k + ,  Then, do one 
detect operation on t, to decide whether or 
not the clauses are satisfiable. 

This process assumes that the operations 
are perfect, that the operations are per- 
formed without error. This definitely needs 
to be studied. The assumption that the ex- 
tract gets all of the sequences is not needed. 
If the original test tuhe has many copies of 
the desired sequence, then all that is neces- 
sary is a reasonable probahility that it is 
correctly extracted to make everything work 
properly. 

These methods can be used to solve a 
generalization of SAT. This generalization 
includes tnost examples of NP probletns. 
The key is to generalize the class of Boolean 
formulas that we consider. Recall that a 
SAT prohlem corresponds to a formula of 
the restricted form 

A natural generalization of this is to con- 
sider problems that correspond to any Bool- 
ean formula. Thus, we allow formulas to be 
unrestricted: They can use the logical oper- 
ations of negation, OR, and AND without 
any restrictions. More precisely, fortnulas 
are defined by the recursive definition 

1) Any variable x is a fortnula. - 
2) If F is a formula, then so is F. 
3) If F, and F2 are formulas, then so are 

F, A F, and F, v F2. 
The size of a formula is tneasured by the 

number of operations used to build the for- 
mula. The SAT probletn for formulas is, 
given a formula F, find an assignment of 
Boolean values to the variahles so that F is 
true. Because this prohlem includes normal 
SAT, it is still NP-complete. 

This SAT problem for formulas can be 
solved in a numher of DNA experiments 
that are linear in the size of the fortnula. 
The key to proving this statement is to 
actually prove more; I show how to solve 
not just any formula, but any contact net- 
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work (5). A contact network is a directed 
graph with a single special source s and a 
single special sink t .  Each edge is labeled 
with either x or 2, where x is some vari- 
ahle. Given any assignment of values to 
the variables, an edge is considered to be 
connected if the edge's formula evaluates 
to 1. Thus, if the edge is labeled with T, 
then it is connected only if x = 0. There- 
fore, the network in Fig. 2 is equal to 1 
only ifw = 1 o r x  = y = g = 1. 

The SAT problem for contact networks 
is to determine whether or not there is an 
assignment of values to the variables such 
that there is a directed connected path 
frotn s to t .  If two edges have the same 
label, then one is connected if and only if 
the other is. Put another way, all values of 
x or i? are consistent. Our result follows 
from two simple claims: ( i )  Given any 
fortnula of size S, there is a contact net- 
work of size linear in S such that the set of 
assignments that satlsfy the fortnula also 
satisfy the network. (ii) Given any contact 
network of size S, the SAT prohlem for the 
network can be solved in order S DNA 
experiments. These two claitns will prove 
our assertion ahout fortnulas. 

The first claitn is classic (5). Two for- 
mulas are equivalent if they always give the 
same value for any assignment to the vari- 
ahles. Any formula can he placed into a 
normal form with DeMorgan's Laws 

contact network. The DNA in each test REFERENCES AND NOTES 
tube should encode in the usual way the set 
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Computation Beyond the Turing Limit 
Hava T. Siegelmann 

Extensive efforts have been made to prove the Church-Turing thesis, which suggests that 
all realizable dynamical and physical systems cannot be more powerful than classical 
models of computation. A simply described but highly chaotic dynamical system called 
the analog shift map is presented here, which has computational power beyond the Turing 
limit (super-Turing); it computes exactly like neural networks and analog machines. This 
dynamical system is conjectured to describe natural physical phenomena. 

Through these identities, any formula is 
eauivalent to one where all the negations are 
on variahles. Assuming that our formulas are 
so restructured. I huild a contact network 
that simulates the formula inductively. If the 
formula is a variable or its negation, then 
there is a single-edge contact network that is 
equivalent. For example, the formula i? is 
equivalent to the network with an edge from 
s to t with the label T.  

In the general case, the formula is equal 
to either E v F or E A F, where E and F are 
sim~ler formulas. Assuming that G is the 
netkork for E and that H Is the one for F, 
the network for E v F is constructed by 
placing G and H in parallel (Fig. 3A). 
Clearlv, there is a connected oath from s to 
t provibed that there is either'a path from s 
to t through G or through H. The network 
for E A F is constructed hy placing thetn in 
series (Fie. 3B). In this case, there is a 
connected path from s to t provided there is 
one through both G and H. 

It is quite simple to show how DNA 
experiments can be used to solve the SAT 
orohlem for anv contact network. Associate 
a test tube P, with each node v in the 

sink t is the "answer." Suppose that v + u 
is an edge with the lahel x (i?) and that P, is 
already constructed. Then, construct PU 
simply by doing the extraction E(P,, x, 1) 
[E(P,, x, O)]. If several edges leave a vertex 
v, then use an amplif\~ step to get multiple 
copies of the DNA in test tuhe P,. Also, if 
several edges enter a vertex v, then pour the 
resulting test tuhes together to form P,. 

The main open question is, of course, if 
one can actually build DNA computers 
based on the tnethods described here. The 
key issue is errors. The operations are not 
perfect. I expect that in the near filture, 
experiments will be performed that will de- 
tertnine whether or not DNA-based comput- 
ers are a practical means of solving hard 
problems. 
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Humanity's intellectual quest to decipher 
nature and to tnaster it has led to numerous 
efforts to build machines-endowed with 
artificial intelligence-that simulate the " 
world or communicate with it (1-4). The 
cotnputational power and dynamic behav- 
ior of such cotnputers is a central question 
for mathematicians, computer scientists, 
and physicists. Computer models are ulti- 
mately based on idealized physical systems, 
called "realizable" or "natural" models. 
Since 1936, the standard accepted model of 
universal computation has heen the Turing 
machine (5), which forms the basis of tnod- 
ern cotnputer science. The Church-Turing 
thesis, the prevailing paradigm in computer 
science, states that no realizable comnutine 

L L, 

device can be more powerful (aside frotn 
relative polynomial speedups that are a re- 
sult of richer instruction sets or parallel 
computation) than a Turing tnachine (5). 
This report questions that assumption, pro- 
Dosing an alternative model of cotnDuta- 
A u 

tion, possibly realizable as well, whose com- 
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putational power can surpass that of the 
Turing model. The proposed model builds 
on a particular chaotic dynarnical system 
(6); hy applying the system to computer 
science, a "super-Turing" tnodel can be de- 
veloped (7). 

Demonstrating the existence of an ide- 
ally realizable super-Turing model has 
practical and theoretical implications. 
Theoretically, it could open the way for 
theories of computation that go beyond 
the Turing model. On  a practical level, 
computers designed and built on the hasis 
of super-Turing theories should be capable 
of tnodeling phenomena that existing 
computers are not powerf~ll enough to 
tnodel well. 

In cotnputer science, tnachines are clas- 
sified according to the classes of tasks thev 

%, 

can execute or the functions they can per- 
form. The most popular model is the Turing 
machine, introduced by the English math 
etnatician Alan Turing in 1936. The Turing 
machine (5) allows for unbounded "exter- 
nal" storage (tapes) in addition to the finite 
information represented hy the current "in- 
ternal" state (control) of the system. At 
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