
bility of selection-directed mutation is not  
eliminated. Adaptive mutation has been 
investigated in other systems that are not  
subject to  the interpretations proposed 
here (25). Organisms sense their environ- 
ment and make directed changes in many 
aspects of their metabolism. It would seem 
to be advantageous to direct mutability. 
We  expect that organisms have exploited 
this possibility. 
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Cloning of the P Cell High-Affinity Sulfonylurea 
Receptor: A Regulator of Insulin Secretion 
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Sulfonylureas are a class of drugs widely used to promote insulin secretion in the treat- 
ment of non-insulin-dependent diabetes mellitus. These drugs interact with the sulfo- 
nylurea receptor of pancreatic p cells and inhibit the conductance of adenosine triphos- 
phate (ATP)-dependent potassium (KATp) channels. Cloning of complementary DNAs for 
the high-affinity sulfonylurea receptor indicates that it is a member of the ATP-binding 
cassette or traffic ATPase superfamily with multiple membrane-spanning domains and 
two nucleotide binding folds. The results suggest that the sulfonylurea receptor may sense 
changes in ATP and ADP concentration, affect KATp channel activity, and thereby mod- 
ulate insulin release. 

sulfonylureas are oral hypoglycemics wide- 
ly used in the treatment of non-insulin- 
dependent diabetes mellitus to stimulate in- 
sulin release from pancreatic islet p cells. 
The mechanism of stimulation is throueh " 
inhibition of an  ATP-dependent potassium 
channel, KATp, which sets the P cell resting 
membrane potential ( I ) .  A reduction of 
potassium outflow causes p cell depolariza- 
tion and the activation of one or more 
L-type calcium channels (2). The resulting 
calcium influx triggers exocytosis (3). Sul- 
fonylureas like tolbutamide or glyburide de- 
crease KATP channel activity, which depo- 
larizes the cell and prompts insulin release. 

The KATP channels and sulfonylurea re- 
ceptors (SURs) appear to be functionally 
linked, although it is not clear if they are a 

L. Aguilar-Bryan, S. W. Wechsler, J. P. Clement IV, A. E. 

single entity (4-6). Biochemical studies in- 
dicate that SUR is a large membrane pro- 
tein (140 to 170 kD) (7) that can bind 
sulfonylureas with high affinity (dissocia- 
tion constant Kd < 10 nM) (1 ). The affin- 
ity of sulfonylureas for SUR is decreased by 
nucleotides and possibly phosphorylation 
(8). It has been proposed that the KATp 
channel contains a sulfonylurea binding do- 
main, a binding site for potassium channel 
openers, and two or more nucleotide bind- 
ing sites that can discriminate between 
ATP and ADP (9). One report has placed 
the nucleotide binding sites and the sulfo- 
nylurea binding site on  the same large mol- 
ecule with an  ATP affinity label (10). 

Glyburide (1 1) and an iodinated deriv- 
ative of glyburide (1 2) can be cross-linked 
by photolabeling to a protein with an  ap- 
Darent molecular size of 140 kD. The ~ h a r -  
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the intact molecule and from V8 protease 
fragments. The same peptide sequence, 
PLAFCGTE(N )HSAAY RVDQGVLNN- 
GC ( 14), was obtained from all radiolabeled 
peptides, including the intact receptor. The 
N in parentheses was identified as aspartic 
acid in deglycosylated peptides and as an 
asparagine within a consensus glycosylation 
site by complementary DNA (cDNA) se- 
quencing. The size of the smallest labeled 
peptide was -50 kD, which indicates that 
the site of labeling is near the NH, terminus 
of SUR. Two antipeptide antibodies were 
generated: one against PLAFCGTE, the 
second against HSAAYRVDQGV. Specific 
immunoprecipitation with these antibodies 
demonstrated that the sequence was de- 
rived from photolabeled SUR. Degenerate 
polymerase chain reaction (PCR) primers 
were designed on the basis of this sequence 
and were used to amplify a 67-base pair 
(bp) fragment from a random primed 
cDNA library constructed in AZAP II with 
polyadenylated mRNA isolated from a 
mouse glucagonoma-cx cell line (aTC-6). 
The SUR and KAn channels are present in 
islet a cells and aTC-6 cells (15). The 
sequence of the 67-bp fragment (1 6) encod- 
ed the expected amino acids with codon 
degeneracy only in the primer regions. A 
minimally degenerate 47-residue oligonu- 

cleotide (16) was synthesized and used to 
rescreen the aTC-6 cell library. A 1.1-kb 
cDNA was cloned that encoded the 25 
amino acids obtained by peptide sequencing 
of the SUR NH,-terminus. This cDNA 
fragment was used to screen rat insulinoma 
(RINmSF) and hamster insulin-secreting 
tumor cell (HIT T15) A phage libraries. 

The open reading frames of hamster and 
rat SUR cDNAs (Fig. 1) encode proteins of 
1582 amino acids with masses of 177,209 
and 177,102 daltons, respectively, which are 
larger than expected from SDSpolyacryl- 
amide gel electrophoresis. These two rodent 
sequences are about 98% identical. Mature 
hamster SUR, defined by peptide sequenc- 
ing, begins with a proliie. The adjacent 
amino acid, a methionine, is presumed to be 
the initiating methionine on the basis of the 
surrounding sequence, which resembles the 
consensus pattern for initiation, -(A/ 
G)CCAUG(G) (1 7). 

Northern (RNA) blot analysis of poly- 
adenylated mRNA isolated from RIN, HIT, 
and aTC-6 cells showed that they all have 
an approximately 5000-nucleotide tran- 
script (Fig. 2). These cells all express SUR 
and KAn channels. The same size tran- 
script was present in total RNA from pan- 
creas, brain, and heart. 

To establish that the cloned cDNA en- 

CHO 

D G V T E S R I f L R L Y M P ~ I T S W Y Y H N I E T S N F P  

RVRRYIFFKTPREVKPPEDLQ 

PIDLRAIAKLPIAMRALTNYQRLCVAFDAQARKDTQSPQGARAIWRALCHAFGRRLILSSTFR@ 

HLGKENHVFQPKTQFLGVY NSSQE 

NLRGAIQTKIYNKIMHMSTSNLSMGEMTAGQICNLVAIDTNQL~FFFLCPNLWTMPVQII 

PVQYFVATKLSQAQRTTLEHSNERLKQTNEMLRGMKLL~YAWESIFCSRVEV 

SFFKESDLSPSV RSTVKALVSVQKLSEFLSS 

AEIREEQCAPREPAPQGQAGKYQAVPLKWNRKRPAREEVRDLLGPLQRLAPSMDGDADNFCVQIIGGFFTWTPDGI 

694 PTLSNITIRIPRGQLTMI LLLATLGEMQMTSGAVFPVNSNLPDSEGRGPQQPRAGDSSWLGYQEQRPR 

7 7 1  GYA~QKPWLLNATVEENITFESPFNPQRYKMVIEAC~~~IDILPHGDQTQIGERGINLSG~RPDQ~GPEP~T~R 

PFSALDVHLSDHLMQAGILELLRDDKRTWLVTHKLQYLPHADWIIAMKDGTIQREGTLKDFQRSECQL 

925 FEHWKTLMNRQDQELEKETVME~EPSpGLPRAMSSRDGLLLDEEEEEEEI1AESEEDDNLSSVLHQRAKIPWRAC 

1002 T HMVLVAIDYWLAKWTDSALVLSPAARNCSLSQECDLDQSVY 

1079 CLVTSVTVEWTGLKVAKRLHRSLLNRIILAPMRFFETTPLGSILNRFSSDCNTIDaHIPSTLECLSMTLLCVSALT 

1156 YFIQKYFRVASRDLQQLDDTTQLPLVSHFAETVEGLTTIRAFRYEARFQQKLLEYTD 

1233 SNNIASLFLTAANRWLEVCMEYIGACWLIAAATSISNSLHREL 

1310 GAVKRIHALLKTEAESYEGLLAPSLIPKNWPDQGKIQIQNLSVR * 
1387 SFSLAFFRMVDMFEGRIIIDGIDIAKLPLHTLRSRLSIILQDPVLFSGTIRFNLDPEKKCSDSTLWEALEIAQLKLV 

1464 VKALPGGLDAIITEGGENFSQGQRQLFCLARAFVRKT EATASIDMATENILQKVVMTAFADRTVVTIAHRV 

1541 HTILSADLVMVLKRGAILEFDKPETLLSQKDSVFASNRADK 

Fig. 1. Amino acid sequence of the hamster SUR. The amino acid sequence of five peptides determined 
bv chemical methods are marked in bold. The ~redicted nucleotide bindina domains &re underlined. and 
the Walker " A  and " B  consensus sequenc& are boxed. Possible sites-of phosphorylation by protein 
kinase A (open diamonds) and C (filled diamonds) are marked above the sequence. Potential transmem- 
brane-spanning helices assigned by the algorithm of Eisenberg et a/. (29) are highlighted. The NH,- 
terminal glycosylation site is marked CHO. Abbreviations for the amino acid residues are in (74). 

coded SUR, we transiently expressed the rat 
and hamster cDNAs in COSm6 cells. Un- 
transfected COSm6 cells, or ones trans- 
fected with P-galactosidase, had no SUR 
detectable by photolabeling or filtration 
binding (Fig. 3) (12). Cells transfected with 
hamster or rat SUR cDNA expressed 140- 
kD photolabeled bands that comigrated 
with native SUR frdm HIT cells. Specific 
photolabeling was reduced by the addition 
of 1 pM iodoglyburide or glyburide. Com- 
petition experiments showed the correct 
rank order of displacement: glyburide > 
iodoglyburide > tolbutamide. Studies of io- 
doglyburide binding to membranes isolated 
from COSm6 cells transfected with hamster 
SUR cDNA revealed Kd - 10 nM. The 
maximum binding capacity B, is about 
145 pmol of SUR per milligram of mem- 
brane protein. This value of B, is about 
100 times that estimated for HIT cells (5). 
Membranes isolated from rat-SUR-trans- 
fected COSm6 cells gave Kd - 2 nM and 
B,, - 9.4 pmol of SUR per milligram of 
membrane protein. These transfected cell 
membranes do not appear to have the low- 
affinity receptors (Kd - 15 pM) previously 
observed in HIT and RIN cell membranes 
(1 2). We conclude that the cloned cDNAs 
encode functional rat and hamster SURs. 

A Blast search (1 8) of the National Cen- 
ter for Biotechnology Information nucleo- 
tide database with the SUR sequence pro- 
duces matches with several members of the 
P-glycoprotein multidrug resistance (MDR) 
protein family. A similar search with the 
amino acid sequence revealed similarities 
with cystic fibrosis transconductance regula- 
tors (CFT'Rs) and MDR proteins and indi- 
cated that SUR is a member of the ATP- 
binding cassette (ABC) or traffic adenosine 
triphosphatase (ATPase) superfamily with 

A B C D  

Fig. 2 Northem blot analysis of total RNA from a 
and p cell lines. About 10 pg of total RNA from (A) 
aTC-6 cells, (B) HIT TI5 cells, (C) RINm5F cells, 
and (D) mouse liver was hybridized with a 2.2-kb 
Eco Rl-Xho I fragment from the SUR cDNA by 
standard procedures. The estimated size of the 
major component is about 5000 nucleotides. 
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two putative nucleotide binding domains. 
The best match, 29% overall identity, is to a 
MDR-associated protein, termed MRP or 
"dvhuar" in the Protein Identification Re- 
source database. This molecule was cloned 
from a small-cell lung-carcinoma cell line 
(H69AR) (1 9). A cluster analysis of dvhuar 
(1 9) indicates that it is most closely related 
to the leishmania P-glycoprotein-related 
molecule (LeJPgpA) (20) and the human, 
bovine, mouse, and dogfish CE.TRs. A sim- 
ilar analysis including SUR and Xenopus 
CFTR indicates that SUR is a member of 
this cluster. 

The identification of two nucleotide 
binding folds (NBFs) extends beyond the 
Walker "A" and " B  consensus sequences 
(21). SUR has two domains with strong 
similarity to the 230- to 240-amino acid 
NBFs found in other members of the ABC 
superfamily (22). The SUR COOH-termi- 
nal fold, NBF-2, is the more highly con- 
served of the two, on the basis of similarity 
with other ATP-binding proteins and com- 
parison of the rat and hamster SUR se- 

Cell: HIT HIT cos cos cos cos cos 
cDNA: (Cl IH) (H) IR) (RI 

G N  - + I -  I - I + I - I +  

Fig. 3. Expression of SUR cDNAs in COS cells. (A) 
Results of photolabding whole cells with lZ51-la- 
beled iodoglyburide. HIT control cells or COSm6 
cells transfected with B-galactosidase (C), hamster 
(H), or rat (R) SUR cDNA were photolateled in the 
presence (+) or absence (-) of 1 pM glyburide as 
described (30). (B) Competition assay done with 
membranes isolated from COSmG cells trans- 
fected either with B-galactosidase (B-Gal) or with 
hamster SUR cDNA subcloned into the pECE vec- 
tor under control of the SV40 early promoter (31). 
Equivalent experiments with membranes from un- 
transfected COSm6 cells gave the same result as 
those with membranes from cells transfected with 
B-galactosidase. cpm, counts per minute. 

quences. An alignment, found with the use 
of PILEUP (18), of 230 SUR amino acid 
residues, beginning with the second Walker 
"A" motif, with the corresponding regions 
of two C m  and two MDRs with the 
greatest similarity to SUR yielded a consen- 
sus sequence, defined as at least three iden- 
tical residues out of five possible, at 165 of 
the 230 positions (-72%). The similarity of 
SUR to traffic ATPases raises the interest- 
ing possibility that SUR may transport 
some endogenous substance and that sulfo- 
nylureas might affect this transport. 

Phosphorylation has been suggested to 
regulate KA, channel conductance (23) 
and to change the affinity of SUR for var- 
ious ligands. SUR has three potential pro- 
tein kinase A (pKA) sites and 20 potential 
protein kinase C (pKC) sites (Fig. 1). There 
are nine potential phosphorylation sites in 
the two NBFs. Two pKA sites (positions 
1447 and 1501) are in NBF-2, along with 
three pKC sites. One of the latter sites, 
Thr1381 in the second Walker "A" motif, 
would be expected to alter nucleotide bind- 
ing if phosphorylated. 

Preliminary efforts to assay SUR for 
K,,, channel activity were carried out by 
the injection of Xenopus oocytes with about 
50 ng of hamster SUR mRNA (24). 00- 
cytes were assayed after 1 to 5 days with 
both two-electrode and patch-clamp meth- 
ods, but no new K+ currents were detected 
in the injected oocytes. Co-injection of 
SUR mRNA with mRNAs transcribed from 
cDNAs encoding three small inward recti- 
fiers-ROMK1 (25), a brain homolog of 
IRK1 (26), and rcK,,-1, also termed CIR 
(27)-failed to confer sulfonylurea sensitiv- 
ity on these K+ channels. The results sug- 
gest either that recombinant SUR does not 
have intrinsic K+ channel activity or that 
Xenopus oocytes are not an adequate back- 
ground for its expression. 

Hydrophobicity and hydrophobic mo- 
ment data, plus the constraints that the 
NH,-terminal glycosylation site be on the 
external face of the membrane and both 
NBFs be cytoplasmic, were used to generate 
a working model of SUR (Fig. 1). This 
model places the NH, terminus outside the 
cell with nine predicted transmembrane- 
spanning helices before the first NBF. Four 
predicted transmembrane-spanning helices 
separate the two NBFs. Thus, SUR differs 
from the canonical model for the traffic 
ATPase superfamily, which has a cytoplas- 
mic NH, terminus and consists of two units 
with six transmembrane-spanning helices 
followed by a nucleotide binding domain 
(22). Dvhuar, the MRP with greatest simi- 
larity to SUR, is predicted to have eight 
transmembrane-spanning helices before the 
first NBF (1 9). 

Mutations in SUR that truncate NBF-2 
cause persistent hyperinsulinemic hypogly- 

cemia of infancy (28). We hypothesize that 
destruction of NBF-2 blocks K,, channel 
activity and prevents SUR from sensing 
changes in nucleotide balance and thus 
modulating islet P cell membrane potential. 
This predicts that SUR is an integral part of 
the KAm channel, specifically that it func- 
tions as the ATP and ADP sensor. 
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Mutations in the Sulfonylurea Receptor Gene 
in Familial Persistent Hyperinsulinemic 

Hypoglycemia of Infancy 
Pamela M. Thomas,* Gilbert J. Cote, Nelson Wohllk, 

Bassem Haddad, P. M. Mathew, Wolfgang Rabl, 
Lydia Aguilar-Bryan, Robert F. Gagel, Joseph Bryan 

Familial persistent hyperinsulinemic hypoglycemia of infancy (PHHI), an autosomal re- 
cessive disorder characterized by unregulated insulin secretion, is linked to chromosome 
11 p14-15.1. The newly cloned high-affinity sulfonylurea receptor (SUR) gene, a regulator 
of insulin secretion, was mapped to 11 p15.1 by means of fluorescence in situ hybrid- 
ization. Two separate SUR gene splice site mutations, which segregated with disease 
phenotype, were identified in affected individuals from nine different families. Both mu- 
tations resulted in aberrant processing of the RNA sequence and disruption of the putative 
second nucleotide binding domain of the SUR protein. Abnormal insulin secretion in PHHl 
appears to be caused by mutations in the SUR gene. 

PHHI is an  autosomal recessive disorder 
of glucose homeostasis characterized by 
unregulated secretion of insulin and pro- 
found hypoglycemia (1 ). The pathophysi- 
ology of this disease remains obscure, but 
in vitro studies have suggested a defect of 
glucose-regulated insulin secretion in pan- 
creatic islet p cells (1,  2). The  PHHl  gene 
was assigned to chromosome 1 lp14-15.1 
by linkage analysis (3 ,4) .  Candidate genes 
for this disorder include those involved in 
the p cell glucose sensing mechanism and 
in insulin secretion. Localization of PHHl  
to chromosome llp14-15.1 excluded pre- 
viously mapped genes involved in p cell 
funcxion, such as the glucokinase, islet glu- 
cose transporter, and glucagon-like peptide-1 
receptor loci (5). W e  considered as a can- 
didate the newly cloned high-affinity SUR 
gene, a member of the adenosine triphos- 
phate (ATP)-binding cassette superfamily 
(6) .  The  SUR protein is a putative subunit 
of the p cell ATP-sensitive potassium 
channel (KATP), a modulator of insulin 
secretion (7). 

W e  used the fluorescence in situ hy- 
bridization (FISH) technique to localize 
the SUR gene on  chromosome 11. Partial 
complementary DNA (cDNA) clones that 
constituted 3.8 kb of the coding sequence 
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of the human homolog of SUR were ob- 
tained (8) and were used for the analysis. 
A specific hybridization signal was detect- 
ed in 85% of metaphases at band 1 lp15.1 
on  both chromatids of the two chromo- 
somes 11. No  other hybridization sites 
were detected. 

Genomic DNA samples from affected 
individuals from three families were ana- 
lyzed by Southern (DNA) blot; human 
cDNA (approximately four-fifths of full 
length) was used as a probe. Because the 
restriction fragment patterns of affected 
and unaffected samples appeared to be 
similar, major insertions or deletions of 
the SUR locus were unlikely to have oc- 
curred in the affected individuals (9). W e  
then used direct sequence analysis to  
screen for small deletions, insertions, or 
missense mutations. The  first region eval- 
uated was the putative second nucleotide 
binding fold (NBF-2) of the human SUR 
homolog (Fig. I ) ,  which is the most highly 
conserved region of the SUR gene (6) .  In 
other superfamily members, NBF- 1 and 
NBF-2 have functional importance in the 
control of channel activity through their 
interaction with cytosolic nucleotides ( 10, 
11 ). In cystic fibrosis, an autosomabreces- 
sive disease caused by mutations in anoth- 
er ATP-binding cassette member [the cys- 
tic fibrosis transmembrane conductance 
regulator (CFTR)], the more frequent and 
severe disease alleles are located in the 
regions of the two NBFs (1 2). 
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