
genes. Results from four representative 
CTL clones (two CD4+TCRaP+ and two 
CD8+TCRap+ T cell clones) are shown 
in Fig. 3. The protection from lysis is 
conferred by expression of HLA class I on 
the target cells because addition to the 
cytotoxicity assay of F(abf), fragments of 
mAb to HLA class I restored killing of the 
SEB-coated transfectants (Fig. 3). Super- 
antigen-induced cytolysis of 72 1.22 1 tar- 
get cells was inhibited by mAb to CD3, 
showing involvement of the TCR-CD3 
complex (22). Thus, CTL clones have, in 
addition to NKB1, a number of function- 
ally similar receptors for HLA class I mol- 
ecules that inhibit the cell-mediated cyto- 
toxicity induced by the interaction be- 
tween TCR on the effector T cells and 
SEB bound to MHC class I1 on the target 
APC. Although we used SEB in our ex- 
periments, similar results were obtained 
with other superantigens such as SEA and 
TSST-1 (22). 

Our results indicate that many T cell 
clones may express inhibitory receptors 
that recognize polymorphic HLA class I 
molecules. Engagement of these receptors 
by their HLA class I ligands on potential 
target cells substantially limits the cyto- 
toxicity induced by bacterial superanti- 
gens. These MHC class I receptors may 
also play a more general role in the regu- 
lation of T cell responses against alloanti- 
gens and conventional peptide antigens. 
In particular, inhibitory signals generated 
through these HLA class I receptors may 
prevent destructive autoimmunity against 
normal tissues in circumstances where T 
cells are activated during an inflammatory 
immune response (23, 24). 
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Cloning of Immunoglobulin-Superfamily 
Members Associated with HLA-C and HLA-6 
Recognition by Human Natural Killer Cells 

Marco Colonna* and Jacqueline Samaridis 

Cytotoxicity by natural killer (NK) cells is inhibited by major histocompatibility complex 
(MHC) class I molecules on target cells. This inhibition may be mediated by NK receptors 
with different MHC specificities. A family of four NK-specific complementary DNAs 
(cDNAs), designated NKATs (NK-associated transcripts), was identified that encoded 
related transmembrane proteins, characterized by an extracellular region with two or three 
immunoglobulin-superfamily domains and by a cytoplasmic domain with an unusual 
antigen receptor activation motif (ARAM). The distribution of these cDNAs was clonotypic 
and correlated with NK cell inhibition by particular class I alleles. Thus, NKAT cDNAs may 
encode receptors for class I molecules on NK cells. 

Cytotoxicity by NK cells is controlled by 
activating and inhibitory receptors (1 ). Re- 
ceptors that activate NK cells, such as the 
Fc y receptor I11 (FcyRIII) and NKR-PI, 
belong to the immunoglobulin (FcyRIII) or 
to the C-type lectin (NKR-PI) superfami- 
lies and trigger NK cytotoxicity when 
bound to an immunoglobulin Fc region or 
to a carbohydrate ligand on target cells, 
respectively (2). Receptors that inhibit NK 
cells turn off NK cytotoxicity when en- 
gaged with an MHC class I molecule on 
target cell (3). The only NK inhibitory 
receptor characterized, Ly-49, belongs to 
the C-type lectin superfamily (4). In hu- 
mans, NK cell clones derived from the 
same individual are heterogeneous in their 
recognition of class I molecules, suggesting 
that there may be multiple NK inhibitory 
receptors with different MHC specificities 
that are clonotypically distributed (5). 
NK clones exist that are inhibited by 
Asn77-Lys80 human leukocyte antigen-C 
(HLA-C) alleles (NK1-specific clones), 
by Ser77-Asn80 HLA-C alleles (NK2-spe- 
cific clones), and by Ilea' HLA-B alleles 
(NK3-specific clones) (6). Monoclonal 
antibodies for human NK inhibitory re- 
ceptors have been reported, but the genes 
have not yet been identified (7-9). 

Basel Institute for Immunology, Basel CH-4005, 
Switzerland. 

*To whom correspondence should be addressed. 

To clone these receptors, we amplified 
human NK cell mRNAs by reverse tran- 
scription-polymerase chain reaction (RT- 
PCR) using several sets of degenerate oli- 
gonucleotides derived from highly con- 
served regions shared by known molecules 
of the immunoglobulin-superfamily (Ig-SF) 
and C-type lectin superfamily. We searched 
for amplified cDNAs preferentially dis- 
played by NK cells as compared to B, T, and 
myeloid cells (10). 

Among several amplified fragments, we 
selected a -240-base pair (bp) cDNA am- 
plified from the NK cell clone 3D2 with 
one set of Ig-SF-specific degenerate primers 
(1 1 ). This fragment hybridized in Northern 
(RNA) blot analysis to a -1.9-kb transcript 
and to a less abundant transcript of -1.7 
kb, which were detected in peripheral blood 
lymphocytes (PBLs), in the NK cell line 
NK3.3 (12), and in the tumor cell line 
SKW3 (13) (Fig. 1). No hybridization was 
observed with other tissues or with the B, T, 
and myeloid cell lines tested, suggesting 
that this cDNA is selectively expressed on 
NK cells (14). 

A full-length cDNA sequence contain- 
ing the 240-bp fragment was obtained by 
amplification of cDNA 5' and 3' ends (15). 
The resulting 1605-bp cDNA sequence, 
termed NKATl (NK-associated transcript 
I ) ,  contains a single open reading frame 
that is predicted to encode a transmem- 
brane protein of 348 amino acids with a 
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molecular sue of 38.5 kD (Fig. 2). The 
amino acid sequence begins with a typical 
hydrophobic signal peptide of 21 amino 
acids followed by an extracellular region of 
224 amino acids, with five potential N- 
linked glycosylation sites. The putative 
transmembrane domain is represented by a 
19-residue stretch of hydrophobic amino 
acids followed by an 84-amino acid long 
cytoplasmic domain. 

Comparison of the predicted amino acid 
sequence of NKATl with the protein se- 

quence databases revealed only a -30% 
identity with the extracellular regions of 
human Fc a receptor (FcaR) and murine 
cell surface antigen gp49, which are mem- 
bers of the Ig-SF (16). The NKATl extra- 
cellular region is composed of two C2-type 
Ig-SF domains, each with two characteristic 
cysteines 48 to 50 residues apart and 
flanked by conserved residues (Val-X-Leu- 
X-Cys and Leu/His-X-Gly-X-Tyr-X-Cys, re- 
spectively, where X is an amino acid). The 
cytoplasmic region contains two Tyr-X-X- 

Fig. 1. ~xpression of the 240- A B 
bp cDNA fragment 1 2 3 4 5 6 7 8 1 2 3 4  5 6 7 8 9 1 0  
from the NK clone 302 in hu- 

7.5 3.9 man tissues and hernatopoietic 2.8 
cells. (A) Lanes 1 to 8: PBLs, 4.4 1.9 
colon, small intestine, ovary, 
testis, prostate, thymus, and 0.9 
spleen. (B) Lanes 1 to 10: U937 2.4 0.6 

(monocytic cell line), HL-60 
(promyelocytic cell line), SKW3 
(leukemia cell line), y8 T cell 
clone, CD8+ T cell clone, CD4+ 
T cell clone, Jurkat (T cell), 
SAVC EBV-transformed B cell 
line), k 3 . 3  (NK cell line), and 
YT (tumor cell line). Bottom pan- 
els, actin controls. Molecular 
size standards are indicated on 
the right side (in kilobases). 

I 

Leu pairs (antigen receptor activation motif 
or ARAM) spaced by 26 amino acids, rath- 
er than six to eight as observed in other 
hematopoietic antigen receptors ( 17). 
These results indicated that NKATl is a 
member of the IgSF. 

Southern (DNA) blot analysis of human 
genomic DNA revealed several hybridizing 
bands for each restriction digest, suggesting 
that a family of genes closely related to 
NKATl may exist (Fig. 3). Genomic DNA 
analysis of human-hamster hybrid cell lines, 
each with a different partial complement of 
human chromosomes, showed hybridizing 
bands only in samples containing human 
chromosome 19, revealing that the NKAT 
gene family maps to human chromosome 19. 

To search for closely related molecules 
e x p r d  on different clones, cDNAs from 
NK clones derived from the same individual 
were amplified by RT-PCR with primers 
based on NKATl sequence, cloned, and 
sequenced (1 8). Distinct but related cDNA 
sequences, termed NKAT2, NKAT3, and 
NKAT4, were detected in some of the 
clones. N U T 2  encodes a transmembrane 
molecule with two C2-type IgSF domains 
(Fig. 2), which has 92% amino acid identity 
with NKATl. NKAT3 and NKAT4 
cDNAs also encode transmembrane pro- 
teins related to NKATl, but their exnacel- 

Fig. 2 Alignment of t ss t EC 
NKATl,NKAT2,NKAT3, Consensus M S L M V V S M A C V G P F L L ~ Q G A W P H M G G Q D K P F L S A - P S - V V P R G G H V - L - @ H Y R - - F N N P M L  

L . . . . .  - - - - - . . - . - - - - . - - - - - - - - - - - - . - - . - - - - - - . -  22 . . .  . . . . . . . . . . . . .  
and NKAT4 amino acid NKAT2 . . . . . . . . . . . . .  . - . . - . - - - - . - - - - - - . . - - - - . - - - - - - - - . - - - - -  22 . . . . . . . .  

. . . . . . . . . . . .  . .  . . . . . . . . . . . . .  sequences.Gaps(dash- L V . R . G  W . . A . . . . . . . . T . R . . . . H R . . . . . .  60 . . .  T . . . . . . . . . . . . . . . . .  L . . . . . . . . . . . R . . T . . . . . . . . A . Q . . . . R G . . . . . .  60 

es) were introduced to 
maxjmize homdogies. Consensus Y K E D R - H - P I P H G R I P Q E S P - M - P V T - A H A G - Y - @ R G S - P H S - T G W S A P S N P - V I M V T G V  

Amino adds identi& to 
the consensus are indi- 
cated by dots. Horizontal 
arrows denote the begin- 
ning of the predicted do- 
mains. Conserved cys- 
teines involved in potential 
disuffide bonds in the ex- 
tracellular domains are 
circled; tyrosine-leucine 
pairs of the ARAM are 
boxed. Amino acid resi- 
dues are numbered on 
the right, beginning with 
the putative initiitor me- 
thionine. SS, signal pep- 
tide, EC, exbacellular; TM, 
transmembrane; CY, Cyto- 
plasmic. cDNA sequences 
have been deposited in 
GenBank with the follow- 
ing accession numbers: 
NKAT1, L41267; NKAT2, 
L41268; NKAT3, L41269; 
and NKAT4, L41270. Sin- 
gle-letter aMxevlatKxls . . 

for 

NKATl 
NKAT2 
NKAT3 
NKAT4 

Consensus 

consensus 

NKATl 
NKAT2 
NKAT3 
NKAT4 

consensus 

consensus 
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NKATl 
NKAT2 
NKAT3 
NKAT4 
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. .  S R . T  . . . . . . . . . . . . . . . . . . .  V . . . . . . . . . . .  I . . . . . . . . . . . . . . . . . . . .  N .  145 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  145 
L A  . . . . . . . . . . . . .  T . . . . . . . . . . . . . .  V . . P . . . . . . . . . . . . K . Q . . . . .  240 . . . . . .  . . . . . . . . . . .  . . . .  L . P V  P . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Q . . .  N . 2 4 0  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . H . .  205 
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G V R . . . R . . . . . . . . . . . . . . . . . . . . . . . .  3 0 0  . . . . . . . . . . . . . . . . . . .  . . . . . . . .  . . . .  . . . . . .  w I . . . . . . . . . . . . . . R . v . . . . R . . . . . . . . . . . . . . . . . . . . . . . .  A L  300 

C TM 
P Y E W S N S S D P L L V S V T G N P S S S W P S P T E P S S K S G N P R H L H V L I G T S V V I I L P I L L L F F L L  

. . . . . . . . . . . . . .  . . . . .  K 264 . . . . . . . . . . . . . . . . . . . .  N . . . . . . . . . .  E T . . . . .  . . . . . . . . . . . . . . . . . . . . . .  265 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . . .  D P  I . . . . . . . . . . . . . . . . . . .  360 
. C V  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I C . . . . . . . . . . . . . F . . . . . . . . . .  360 * cy 
H R W C S N K K N A A V M D Q E P A G N R T A N S E D S D E Q D P Q E V T Y A Q L D H C V F T Q R K I T R P S Q R P K T  0 

S .  T N . . . . . . . . . . . . . . . . . .  324 . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . . .  . .  
. . . .  C . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  325 
. L  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  E . . . . . . . . . . . . . .  . . . . . . . . . . . .  420 
Y . . . . . . . . . . . . . . . . . .  D . . V . R Q  . . . . . . . . . . . . . . . . . . . .  I . . . . S . . . . . . . .  420 

P P T D I I V Y T E L P N A E P R S K V V S C P - - - - - - - - - - -  0 
amino residues . . . . . . . . . . . . . . .  s . . . . . . . .  

areasfdlows:A,Ala;C, . . . . . . . . . . . . . . . .  - - - - - - - - 
. . . . .  . . . .  T . L .  . . . . . .  K . . . .  

. . . . . . . . . . . . . . . . . .  Cys;D,Asp;E,Glu;F, NKAT4 . L . . T S  R A P Q S G L E G V F  

Phe; G, Gly; H, His; I, Ile; K, 
Lys; L, Leu; M, Met; N, Asn; P, Pro; Q, Gln; R, Arg; S, Ser; T, Thr; V, Val; W, Trp; and Y, Tyr. 
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lular domains consist of three Ig-SF do- 
mains instead of two. The predicted 
NKAT3 and NKAT4 proteins consist of 
444 and 455 amino acids with a molecular 
size of 49.1 and 50.2 kD, respectively (Fig. 
2). An alignment of NKAT cDNAs re- 
vealed an identity of -80% within the 
NKAT group, with divergent amino acids 
interspersed throughout the extracellular, 
transmembrane, and cytoplasmic domains, 
rather than clustered (19). 

NK cell inhibition by class I molecules is 
heterogeneous, because different NK clones 
display specificities for distinct HLA mole- 
cules (6). To test whether the expression of 
particular NKAT genes is related to NK 
specificities for class I alleles, we amplified a 
cDNA fragment shared by all NKAT genes 
by RT-PCR from 45 NK cell clones derived 
from the same donor, and the amplified 
products were hybridized with oligonucleo- 
tide probes specific for each of the NKAT 
genes (Fig. 4) (20). NK clones showed dif- 
ferent expression patterns, with most clones 
expressing multiple genes. NKATZ was the 
most widely expressed (34149, then 
NKAT4 (29/45), NKAT3 (23/45), and 
NKATl (13145). More importantly, the 
clonotypic expression of these genes corre- 
lated with the susceptibility of NK cell 
clones to inhibition by specific class I mol- 
ecules. All NK1-specific clones (inhibited 
by Asn77-Lys80 HLA-C alleles) expressed 
NKATl (13/45), whereas this gene was not 
expressed in clones that lack this specifici- 

ty. NK3-specific clones (inhibited by IleW 
HLA-B alleles) expressed either NKAT3 
(13145) or NKAT4 (19145) or both (10/45), 
whereas clones that lack NK3 specificity 
expressed neither. Finally, NKZ-specific 
clones (inhibited by Ser77-Asn80 HLA-C 
alleles) expressed N U T 2  (12/45). Howev- 
er, this gene was also expressed on clones 
that lack NKZ specificity. This may be ex- 
plained by the presence of unknown NKAT 
genes, which do not correlate with NKZ 
specificity, but cross-hybridize with 
NKATZ. Alternatively, as suggested (7), 
NKZ specificity may be determined by the 
cooperation of two molecules, only one of 
which is encoded by NKATZ. 

The p58 molecules have been proposed 
as candidate receptors for HLA-C (7, 8). 
Two types of p58 molecules have been 
defined serologically: one, recognized by 
monoclonal antibodies (mAbs) EB6 and 
HP3E4; another, recognized by mAb 
GL183. All the NK1-specific cell clones 
(inhibited by Asn77-Lys80 HLA-C alleles) 

NK speciflcltles 
1 1 1 1 1 1 1  2 2 2  

. . 3 3 3 3 3 3 3 3 3 3 3  

NKATl 

Fig. 3. DNA blot analysis. NKATl cDNA hybrid- 
ized to several restriction fragments of human 
genomic DNA under conditions of high stringen- 
cy. Restriction digests were with Eco RI, Hind Ill, 
Bam HI, Pst I, and Bgl II (lanes 1 to 5). Molecular 
size standards are indicated on the right (in kilo- 
bases). Human DNA was extracted from PBLs by 
standard protocol and digested with restriction 
enzymes. DNA fragments were separated by 
electrophoresis in a 0.7% agarose gel, transferred 
to a nylon membrane (Hybond N+, Amersharn) by 
capillary blot in 0.4% NaOH, and hybridized with 
NKAT1 probe. Hybridization, washings, and ex- 
posure were as described (14). 

Fig. 4. Expression patterns of NKAT genes in 13 
representative NK cell clones (bottom) with diier- 
ent MHC specificities (top); the cell clones were 
derived from a single donor. NK cell clones were 
obtained as described (6). For determination of 
MHC specificity, cytotoxicity was tested against 
HLA-C and HLA-B transfectants in class I deletion 
mutants by a 4-hour SICr-release assay, as de- 
scribed (6). Specificities 1, 2, and 3 indicate a 
significant inhibition of NK cytotoxicity by 
LyssO HLA-C alleles, by HLA-C alle- 
les, or by lleEO HLA-B alleles, respectively. Ampli- 
fied cDNA obtained from each of the NK clones 
was tested for NKAT1,2,3, and 4 expression by 
oligotyping (20). 

used in our study expressed NKATl and 
stained positive for HP3E4. More impor- 
tantly, an HP3E4-negative T cell line be- 
came HP3E4-positive after transfection 
with the NKATl gene (21) (Fig. 5). Thus, 
NKATl encodes the p58 molecules recog- 
nized by mAb HP3E4. NKATZ resembles 
NKATl in size and amino acid sequence, 
but is expressed in NK clones with differ- 
ent HLA-C specificity. Thus, NKATZ 
may encode for the other p58 molecule, 
recognized by mAb GL183. A 70-kD gly- 
coprotein recognized by antibody DX9, 
designated NKB1, has been proposed as a 
candidate receptor for some HLA-Bw4 
alleles (9). NKAT3 or NKAT4 (or both) 
may encode NKBl, because they are ex- 
pressed in NK cell clones that are inhib- 
ited by Bw4 alleles and the predicted size 
of the encoded protein is close to that of 
the deglycosylated NKBl protein (-50 
kD). 

bur results provide evidence that NK 
cells express Ig-SF molecules, characterized 
by heterogeneity and clonotypic distribu- 
tion, that may be receptors for class I mol- 
ecules. Interestingly, NKAT-encoded mol- 
ecules are structurally different from Ly-49, 
a C-type lectin that is also a receptor for 
class I molecules in mouse NK cells. Where- 
as Ly-49 may interact with carbohydrate 
determinants of class I molecules, NKAT 
receptors may recognize class I-bound pep- 
tides (22) or solvent-exposed class I 
epitopes. 

The availability of NKAT cDNAs will 
make it possible to investigate the mecha- 
nisms by which NK cytotoxicity is turned 
off by MHC recognition. It is possible that 
NK receptors may behave either as activat- 
ing or inhibitory receptors depending on 
their affinity for the MHC class I-peptide 
complex (22, 23). Alternatively, tyrosine 
phosphorylation of the receptor on the 
atypical ARAM motif may recruit an SHZ- 
containing protein that blocks NK cell ac- 
tivation, similar to what has been proposed 
for the FcyRIIB (24). 

log Fluorescence 

Fig. 5. Cell surface expression of the NKATl- 
encoded protein recognized by anti-p58 rnAb 
HP3E4 after transfection of the NUT1 gene. 
Jurkat T cells transfected with the pCRlll vector 
alone (left panel) or with pCRIII-NKAT1 (right pan- 
el) were stained with HP3E4 (solid lines) or with 
control mouse IgM (dashed lines)followed by phy- 
coerythrin-conjugated goat antibody to mouse 
IgM. Events were collected on a FACScan flow 
cytometer (Becton-Dickinson). 
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JVlembrane-bound Ig mediates several 
physiological responses in both developing 
and mature B lymphocytes (I) . These re­
sponses can be divided into two categories: 
One set of events is triggered by antigen, 
whereas a second group is antigen-indepen­
dent. The antigen-independent responses 
occur early in the B cell developmental 
pathway and can be induced by mo, even in 
the absence of light chain synthesis. The 
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first of these events is a discreet develop­
mental transition from progenitor B cell 
(pro-B cell) to precursor B cell (pre-B cell). 
Disruption of either the transmembrane do­
main-encoding region of the mo, gene or 
the recombinase activating genes (RAGs) 
that are required for Ig gene assembly results 
in lymphocytes that fail to develop beyond 
the pro-B cell stage (2, 3). This develop­
mental deficiency can be specifically com­
plemented by the transgenic addition of a 
rearranged m|x gene (4, 5). B cells that 
develop to the pre-B cell stage then under­
go heavy-chain allelic exclusion, a second 
antigen-independent, m|x-mediated re­
sponse (6). Expression of mo, in pre-B cells 
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Lymphocytes express multicomponent receptor complexes that mediate diverse antigen-
dependent and antigen-independent responses. Despite the central role of antigen-inde­
pendent events in B cell development, little is known about the mechanisms by which they 
are initiated. The association between the membrane immunoglobulin (Ig) M heavy chain 
(m x̂) and the Iga-lgp heterodimer is now shown to be essential in inducing both the transition 
from progenitor to precursor B cells and subsequent allelic exclusion in transgenic mice. The 
cytoplasmic domain of Igp is sufficient to induce these early antigen-independent events by 
a mechanism that requires conserved tyrosine residues in this protein. 


