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Modulation of Serotonin-Controlled Behaviors
by G, in Caenorhabditis elegans

Laurent Ségalat, Daniel A. Elkes, Joshua M. Kaplan*

Seven transmembrane receptors and their associated heterotrimeric guanine nucle-
otide-binding proteins (G proteins) have been proposed to play a key role in modulating
the activities of neurons and muscles. The physiological function of the Caenorhabditis
elegans G protein G, has been genetically characterized. Mutations in the goa-17 gene,
which encodes an « subunit of G, (Ga,), cause behavioral defects similar to those
observed in mutants that lack the neurotransmitter serotonin (5-HT), and goa-7 mutants
are partially resistant to exogenous 5-HT. Mutant animals that lack Ga, and transgenic
animals that overexpress Go, [goa-7(xs) animals] have reciprocal defects in locomo-
tion, feeding, and egg laying behaviors. In normal animals, all of these behaviors are
regulated by 5-HT. These results demonstrate that the level of G, activity is a critical
determinant of several C. elegans behaviors and suggest that G_ mediates many of the

behavioral effects of 5-HT.

Changes in environmental conditions or
physiological status often produce global
changes in the behavior of animals. Two sets
of experimental results suggest that seven
transmembrane receptors (7-TMRs) and G
proteins play a pivotal role in the modula-
tion of behavior. First, synaptic signals pro-

duced by 7-TMRs are well suited to the task
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of promoting long-term changes in behavior
because G proteins typically regulate the ac-
tivities of neurons and muscles by means of a
cascade of second messengers (I). Second,
neurotransmitters that act on 7-TMRs (that
is, metabotropic agonists) are potent modu-
lators of many behaviors (2). However, the
specific receptors and G proteins that medi-
ate the response to a particular agonist are
often not known.

We have genetically analyzed signaling
by the metabotropic agonist 5-HT in Cae-
norhabditis elegans. It has been proposed that
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5-HT acts as a neurohormone that regulates
many behaviors of C. elegans (3-6). We
screened for 5-HT signaling mutants in a
two-step process. Because mutants that lack
5-HT move hyperactively (7), we first iso-
lated hyperactive mutants. We then deter-
mined whether the hyperactivity could be
corrected by exogenous 5-HT.

Two mutations in a previously uncharac-
terized gene, n363 and nl134, had been
described as conferring resistance to 5-HT
(8). We confirmed these results, finding that
n363 and n1134 animals are extremely hy-
peractive and that this hyperactivity is resis-
tant to exogenous 5-HT. Because it may
encode an effector of 5-HT signaling, we
cloned the gene defined by these mutations.

We mapped the n363 and nl134 muta-
tions to a 0.2-map unit interval on chromo-
some I (Fig. 1A). The n363 mutation corre-
sponds to a deletion of greater than 13 kb
(Fig. 1B), which spans the goa-1 gene (9).
The nl134 mutation is a missense mutation
in codon 1, and the predicted n1134 protein
corresponds to a four-residue NH,-terminal
truncation of Ga, as a result of initiation of
translation at Met® (Fig. 1C). Unlike the
wild-type protein, the NH,-terminus of the
nl1134 protein does not fit the consensus for
NH,-terminal myristoylation (10). Because
nonmyristoylated Get, subunits fail to asso-
ciate with both By subunits and membranes,
the nl134 protein is likely to be defective for
Ga,, function (11). Thus, both 7363 and
n1134 correspond to mutations in the goa-1
gene, which implies that defects in Ga,
cause hyperactive locomotion and resistance
to 5-HT.

Does G, mediate the 5-HT modulation of
other behaviors? Four behaviors of C. elegans
(locomotion, defecation, feeding, and egg
laying) are known to be regulated by 5-HT.
We used several criteria to determine wheth-
er G, mediates the effects of 5-HT on these
behaviors. First, we examined the expression
pattern of the goa-1 gene to determine if the
cells underlying these behaviors express G,
(Fig. 2) (12). Second, we examined goa-1
and goa-1(xs) animals for defects in these
behaviors (13, 14). And third, we tested
goa-1 mutants for sensitivity to 5-HT and
other metabotropic agonists (15). Our results
suggest that G_ mediates the effects of 5-HT
on locomotion, defecation, and probably egg
laying (Table 1).

We further explored the role of G, in
regulating locomotion by comparing the be-
haviors of goa-1 and goa-1(xs) animals (Fig.
3A). The comparative rates of locomotion
were n363 = nl134 > wild type > goa-1(xs).
These experiments demonstrate that the en-
dogenous level of Ga, activity regulates lo-
comotion. The hyperactive locomotion of
goa-1 mutants (both alleles) was partially
resistant to exogenous 5-HT (and other se-
rotonergic agonists) but was sensitive to

quinpirole, a dopamine agonist (Fig. 4A).
The simplest interpretation of these experi-
ments is that 5-HT, signaling by means of
Ga,, inhibits the activity of the ventral cord
motor neurons (which express Ga, Fig. 2A)

Fig. 1. The mutations n363 and  p
n1134 are in the goa-1 gene (25). K
(A) These mutations genetically o“d
map in the interval bounded by unc- |

thereby inhibiting locomotion. However,
because Ga is expressed in many other neu-
rons as well (Fig. 2F), we could not conclu-
sively determine the site of 5-HT action in
modulating locomotion.

0.1 map unit
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o &

|

13 and gld-1 on chromosome |. (B) |
Restriction map of goa-1. The mu-
tation n363 corresponds to a dele-
tion starting approximately 5 kb 5’ B
of exon 1 and extending more than
5 kb 3’ of the last exon of goa-1.

The n363 polymorphism is detect- ==

ed by the cosmids C14E4 and 3

|————s0m

C29D11. The right-hand end point

of the n363 deletion has not been
determined. The KP#10 plasmid
(used for overexpression studies)
contains a 7-kb Eco RI fragment ~ 1kb_
that spans goa-1. Enzymes are in-
dicated as follows: H, Hind Ill; N,

Nco |; R, Eco RI; and S, Sph 1. (C) c
The n1134 mutation is a G-to-A
transition in codon 1, which elimi-

nates a Nco | site. The predicted

goa-1cDNA

Y

n363 deletion

=z
o)
T
=
—w
SEOEE [EEEEE 55

KP#10 fragment

Wild type MGCTMSAQ......
n1134 protein

Myristoylation consensus  MGXXXS.........

protein product of n7134 does not fit the consensus for NH,-terminal myristoylation (70).

Fig. 2. Expression of Ga,, (12). (A) Ventral cord motor neurons (arrow heads). (B) Pharyngeal muscles and
nerve ring neuropile (arrow). (C) Vulva muscles (arrow heads). Airow indicates the vulva opening. (D)
Enteric muscles: the intestinal muscles (IM) and the anal depressor muscle (AD). The anal sphincter
muscle also stains but is out of the plane of focus. (E) CAN, HSN, and PVD neurons. (F) Anterior sensory
tracts (AS), ring ganglia (RG), and dorsal and ventral nerve cords (DNC and VNC).
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The expression of Ga, in the pharyngeal
muscles and in pharyngeal neurons is shown
in Fig. 2B. The pharyngeal muscles pump
food into the intestine and hence are essen-
tial for viability. Mutant animals pump food
more slowly than wild-type animals (Fig.
3B) and, consequently, have the character-
istic pale appearance of starved animals.
Conversely, goa-1(xs) animals pump actively
in the absence of food, a condition where
normal animals pump slowly (Fig. 3B). Be-
cause 5-HT normally stimulates pharyngeal
pumping (4, 16), we wondered whether the
pumping defect of goa-1 mutants might also
reflect defects in serotonergic signaling.
However, we found that 5-HT stimulated
the pharyngeal pumping of goa-1(n363) and
wild-type animals equally well (Fig. 4B).
Thus, Ga, acting in either pharyngeal neu-
rons or muscles, regulates pharyngeal pump-
ing, probably in response to a neurotrans-
mitter other than 5-HT.

Several lines of evidence suggest that G,
regulates egg laying: Eggs in the hermaphro-
dite uterus are expelled through the vulva by
the contractions of the vulva muscles, the
serotonergic HSN motor neurons are presyn-
aptic to the vulva muscles, and 5-HT stim-
ulates egg laying (5, 17, 18). Because Ga is
expressed in both the vulva muscles and the
HSN neurons (Fig. 2, C and E), we analyzed
the effects of G, expression on egg laying.
We found that mutant animals lay eggs hy-
peractively, whereas goa-1(xs) animals lay
eggs poorly (Fig. 3, C and D). Octopamine
and dopamine are known to inhibit egg lay-
ing; therefore, we wondered whether they
might signal by means of G (4). The goa-
1(n363) mutation had no effect on inhibi-
tion of egg laying by octopamine and quin-
pirole (Fig. 4C). To determine whether lack
of Ga, activity in the vulva muscles is suf-
ficient to cause hyperactive egg laying, we
examined the egg laying behavior of goa-1;
egl-1 double mutants. Mutations in the egl-1
gene cause the HSN neurons to die (5).
Because the goa-1(n363); egl-1 mutants con-
tinue to lay eggs hyperactively (19), we con-
clude that Ga, acts in the vulva muscles to
inhibit egg laying. Because both 5-HT and
goa-1 mutations stimulate vulva muscle con-
tractions (and hence egg laying), goa-1 mu-
tations may cause constitutive 5-HT signal-
ing in the vulva muscles.

During defecation, intestinal contents are
expelled through the anus by contraction of
the enteric muscles (that is, the intestinal,
anal sphincter, and anal depressor muscles)
(20). Although Ga is expressed in the en-
teric muscles (Fig. 2D), we observed no de-
fects in the enteric muscle contractions of
either mutant or transgenic animals (19). It
has been shown that 5-HT inhibits enteric
muscle contractions (21); therefore, we won-
dered whether Ga, is required for 5-HT

regulation of the enteric muscles. We found
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Fig. 3. The dose of Ga,,
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Pharyngeal pumping

activity modulates sever-
al behaviors. Behaviors
were quantitated as de-
scribed (73). Genotypes
are as indicated by the
legend. Error bars indi-
cate the SEM. (A) Loco-
motion rate: goa-1 >
wild type > goa-1(xs).
(B) Pharyngeal pumping
rate: without food, goa-
1(xs) > wild type =
n1134 = n363; with
food, wild type = goa-
1(xs) > n1134 > n363.
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that the enteric muscle contractions of wild-
type animals are more potently inhibited by
5-HT than are those of goa-1(nl1134) ani-
mals (Fig. 4D). These results suggest that
Ga,, mediates the inhibitory effects of 5-HT
on defecation.

Which neurotransmitters signal via G_?
All of the behaviors regulated by G, are also
regulated by 5-HT, and goa-1 mutants are
resistant to the effects of 5-HT on locomo-
tion and defecation (Fig. 4, A and D). In
contrast, we consistently failed to find de-
fects in signaling by other agonists (that is,
octopamine and dopamine) in goa-I mu-

goa-1(n1134)

goa-1(n363) [] goa-1 (xs)

tants, which suggests that the effects on
5-HT signaling are relatively specific (Fig.
4). Although we cannot exclude the possi-
bility that other neurotransmitters signal via
G,, it seems plausible that most of the be-
havioral effects of Ga, might arise from
changes in signaling by 5-HT. Because 5-HT
is probably acting as a neurohormone in C.
elegans (3), the widespread expression of Gar |
is not surprising.

The mechanisms by which G, regulates
downstream effectors are not known. For
other G proteins, signaling occurs via both

the a and the By subunits (22). If Ga,

Table 1. Summary of Ge,, expression behavioral effects. Cells expressing goa-71 were determined as
described (72), and they were identified by their anatomical positions and morphologies (18, 26). The
behaviors of wild-type animals treated with 5-HT and of untreated goa-1 and goa-1(xs) animals were
analyzed as described (713). The sensitivity of mutant animals to 5-HT was determined as described (75).
The signaling subunit refers to the subunit predicted to mediate 5-HT signaling in each behavior. ND, not

determined; NA, not applicable.

- Behavioral effect of 5"::_"-1 S
. ells sensitivity ignaling
Behavior expressing Ga, of goa-1 subunit
5-HT goa-1 goa-1(xs) mutants
Locomotion Motor neurons*  Inhibit Stimulate Inhibit Resistant Ga,,
Feeding Pharyngeal Stimulate Inhibit Stimulate Sensitive NA
muscles and
neurons
Egg laying Vulva muscles Stimulate Stimulate Inhibit ND G Bv?
Defecation Enteric Inhibit Normal Normal Resistant Ga,
musclest

*Many neurons express Ge,, including ventral cord motor neurons (72).

sphincter, and anal depressor muscles.
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Fig. 4. Sensitivity of
goa-1 mutants  to 30

Locomotion

Pharyngeal pumping

metabotropic agonists A
Wild type

(75). Drug treatments are
indicated by the legend.
Error bars indicate the
SEM. (A) Locomotion of
goa-1(n363) mutants is
partially resistant to 5-HT
but fully sensitive to quin-
pirole. (B) 5-HT stimu-
lates the pharyngeal
pumping of goa-1(n363)
and wild-type animals
equally well. (C) Egg lay-
ing of goa-1(n363) mu-
tants is fully sensitive to
quinpirole and octopa-
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mine.  Stimulation by 100
5-HT of egg laying was
not analyzed because of
the hyperactive egg lay-
ing phenotype of goa-1
mutants. (D) Enteric
muscle contractions of
goa-1(n1134) mutants
are partially resistant to
5-HT.

C
Wild type

Number of eggs laid
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signals, then mutations in goa-1 should block
signaling, whereas if By signals, then muta-
tions in goa-1 should produce constitutive
signaling. Our results are consistent with the
following model for G, function. Locomo-
tion and defecation are inhibited by 5-HT
via Ga,, and goa-1 mutants are defective for
5-HT signaling in these tissues. In contrast,
5-HT stimulates vulva muscle contractions
via B, and goa-1 mutants have constitutive
5-HT signaling in the vulva muscles. Alter-
natively, because By subunits facilitate phos-
phorylation of 7-TMRs by receptor kinases
(23), defects in Ga, might produce consti-
tutive phosphorylation and hence constitu-
tive desensitization of 5-HT receptors. How-
ever, constitutive desensitization of 7-TMRs
in goa-1 mutants would produce widespread
agonist resistance, whereas we observed re-
sistance only to 5-HT (Fig. 4). Thus, our
results are most consistent with the model
that 5-HT signals via G,, thereby modulat-
ing locomotion, defecation, and probably
egg laying. Our results lend further support
to the proposal that signals produced by
7-TMRs and G proteins engender global
changes in behavioral states.
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