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pheromones has been suggested (16), but
these putative pheromones have never
been isolated. Given the fact that sexually
mature newts lead an aquatic life, a non-
volatile, but water-soluble, peptide is a
reasonable form to expect as a pheromone
in this vertebrate.
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Epithelial Antibiotics Induced at
Sites of Inflammation

Barry S. Schonwetter,* Ethan D. Stolzenberg, Michael A. Zasloff

The role of antimicrobial peptides in epithelial defense is not fully understood. An epithelial
B-defensin, lingual antimicrobial peptide (LAP), was isolated from bovine tongue and the
corresponding complementary DNA cloned. LAP showed a broad spectrum of antibac-
terial and antifungal activities. LAP messenger RNA abundance was markedly increased
in the epithelium surrounding naturally occurring tongue lesions. This increase coincided
with the cellular hallmarks of acute and chronic inflammation in the underlying lamina
propria, supporting a role for epithelial antimicrobial peptides as integral components of

the inflammatory response.

The epithelia of vertebrates provide the
first line of defense between organism and
environment (1). When this barrier is
breached, microorganisms invade and an
acute inflammatory response occurs (2).
The physical barrier is fortified by the se-
cretion of numerous antibacterial agents,
including immunoglobulin antibodies, en-
zymes such as lysozyme, and proteins such as
lactoferrin (3). Antimicrobial peptides have
also been detected in barrier epithelial cells
of several mammalian species, including
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mice, cows, and humans (4-6). Although
the expression of antimicrobial molecules
in epithelia suggests that they may partici-
pate in host defense, no direct evidence has
been obtained to support such a role.
Mammalian tongue contains a dense ep-
ithelium that is constantly colonized by the
microbial biota of the mouth, which in-
cludes bacteria, fungi, and viruses (7). Al-
though abrasions to the surface of the
tongue occur often, invasive infections in a
normal host are rare, remain localized, and
heal rapidly. Invasive infections of the
tongue would interfere with the processes of
chewing, swallowing, taste, and speech (8).
Why is this exposed surface free of con-
tinuous infection? We approached this prob-

Fig. 1. Purification of lingual antimi-

crobial peptide (LAP). (A) Strong

cation exchange chromatography
1 of bovine tongue epithelial extract.
(B) Antimicrobial assay of fractions
against Escherichia coli D31. (C)
Antimicrobial assay of fractions
against Candida tropicalis. Antimi-
crobial activity against E. coli D31
was detected in fraction 70 (B), cor-
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60 responding to a peak [in absor-
bance at 220 nm (A,,,)] eluting at
40 min (A). Antimicrobial activity
against C. tropicalis was detected
in fractions 57, 65, 70, and 96 (C),
corresponding to peaks with reten-
tion times of 33.5, 37.5, 40, and 53
min (A), respectively. PGLa (5 pg)
was used as a control for E. coli
D31 activity (B), whereas ampho-
tericin B (5 n.g) is active against C.
tropicalis (C).
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lem by determining whether the epithelium
of the tongue produces antibiotic agents ca-
pable of providing a broad spectrum chemi-

Fig. 2. Peptide and cDNA
sequences of LAP. (A)
Peptide sequences of
LAP, tracheal antimicrobi-
al peptide (TAP), and the
consensus  of  bovine
B-defensins. (B) Comple-
mentary DNA and amino
acid (27) sequences of
LAP. Double underline,
putative signal sequence;
solid underline, mature
peptide; dashes, termina-
tion codon; and bold un-
derline,  polyadenylation
signal.

A
Peptide sequence

LAP QGVRNSQSCRRNKGICVPIRCPGSMRQIG!
Lot e e
TAP NPVSCVRNKGICVPIRCPGSMKQIGTCVGRA

B-Defensin
consensus

-------- C----G-C----C

QIG-C

cDNA
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] ] 1 1
CTCGTGCATTCGGCACCGACAGCATGAGGCTCCATCACCTGCTCCTTGCGCTCCTCTTCCTGGTCCTGTCTG
M R L H H L L LAULULVFIULVUL S

80 90 100 110 120 130 140
| | | | | | |
CTGGGTCAGGATTTACTCAAGGAGTAAGAAATTCTCAAAGCT GCCGTAGGAATAAAGGCATCTGTGTGCCGA
A G S GF T QGVRNSQSCRURNIKTGTITCUVEP

150 160 170 180 190 200 210

| | | | | | |
TCAGGTGCCCTGGAAGCATGAGACAGATTGGCACCTGT CTCGGAGCCCAAGTAAAATGCTGCAGGAGGAAGT
I RCP G S MRQIGT CLGAAQVI KT CTCRURIK®=

220 230 240 250 260 270 280
| | | | | | |
AAAAGAAGGCGAAGACGTGGCCAGACTGGATGCGGAGT CAGAAACTGTGCCCTTGGACAGAGAGTTTAAAAT

290 300 310 320 330 340 350

| | | | | | |
TTAAACCAGAATAAATTTTGTTCAAAGTTAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
——

cal shield. Antibacterial and antifungal pep-
tides were extracted from the dissected lin-
gual epithelium of bovine tongue (Fig. 1) by
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a standard procedure for isolating antimicro-
bial peptides, which includes organic extrac-
tion as well as reversed-phase and strong
cation exchange high-performance liquid
chromatography (HPLC) (9). The most
abundant antimicrobial peptide isolated
(10), a member of the B-defensin class (Fig.
2A), exhibited both antifungal and antibac-
terial activity (Table 1) (11). This peptide,
termed lingual antimicrobial peptide (LAP),
is related in sequence to tracheal antimicro-
bial peptide (TAP) (5), which is expressed
in the ciliated epithelium of the upper airway
of the cow, as well as to bovine neutrophil
B-defensins (BNBDs) (12).

A complementary DNA (cDNA) library
was generated from bovine tongue epitheli-
al polyadenylated [poly(A)*] RNA and a
cDNA for LAP was isolated (Fig. 2B) (13).
The cDNA encodes a 64—amino acid pre-
cursor that is structurally similar to the
prepro-peptide for the B-defensin TAP (5).

The site of expression of the LAP gene in
normal tongue was examined by in situ hy-
bridization with LAP sense and antisense
RNA probes (Fig. 3) (14). The antisense
probe revealed intense hybridization in the
middle layers of the epithelium (Fig. 3B); the
sense probe yielded no hybridization signal
(Fig. 3A). LAP mRNA was detected on the
dorsal surface of both the front and back of
the tongue. In contrast, LAP transcripts were
not detected in taste buds, the lamina pro-
pria underlying the epithelium, or neutro-
phils within the tissue specimen. Thus, the
upper surface of the tongue is covered by an
antibiotic-expressing epithelium.

We next assessed whether injury or infec-
tion of the tongue surface affects local ex-
pression of LAP. We studied lesions on the
tongues of three otherwise healthy cows and
two representative lesions are shown (Fig. 3,
C to F). The lesions were several millimeters
in diameter and probably caused by trauma
during grazing and subsequent infection.
Each lesion exhibited destruction of the nor-
mal epithelium as well as areas in the lamina
propria that showed both acute and chronic

Fig. 3. Induction of LAP mRNA in areas surround-
ing sites of inflammation or infection. (A and B)
Normal distribution of LAP mRNA as revealed by
hybridization with sense (A) and antisense (B) RNA
probes. Hybridization with the antisense transcript
revealed that LAP mRNA is localized in the middle
layers of the epithelium. (C to F) In situ hybridization
of two naturally occurring bovine tongue lesions
with sense (C and E) and antisense (D and F) RNA
probes. Increased LAP mRNA abundance is ap-
parent in areas surrounding sites of acute and
chronic inflammation or infection. In (D), a region of
normal LAP mRNA abundance (left) is adjacent to
an area showing a markedly increased abundance
surrounding a site of infection or inflammation
(right). In (F), an increase in LAP mRNA abundance
is apparent in areas surrounding an abscess (left).
Magnification: (A and B), x40; (C to F), xX20.



inflammation was

inflammation. Acute
characterized by the presence of hemorrhage,
erythrocyte accumulation, and infiltration of

polymorphonuclear leukocytes; areas of
chronic inflammation were characterized by
infiltration of mononuclear cells and the
presence of granulation tissue.
Hybridization of these bovine tongue tis-
sue specimens with the LAP antisense RNA
probe revealed a marked increase in LAP
mRNA in the epithelia surrounding areas of
both acute and chronic inflammation (Fig.
3, D and F). The increase extended ~3 to 4
mm on either side of the central lesion.
Normal tissue in these sections showed no
apparent increase in LAP mRNA compared
to uninvolved tissue from noncontiguous

Table 1. Minimal inhibitory concentrations (MICs)
of lingual antimicrobial peptide (LAP) and ma-
gainin Il against bacteria and fungi.

MIC (ng/ml)
Microorganism
LAP  Magainin Il
Escherichia coli D31 16-32 13-25
Pseudomonas aeruginosa 63-125  13-25
(27853)
Staphylococcus aureus 63-125 50-100
(29213)
Candida albicans 32-63 50-100
(14053)
Candida tropicalis 16-32 13-25
(13803)

*Numbers in parentheses refer to American Type Culture
Collection strains.
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sites, nor was LAP mRNA present within
the lamina propria of injured tissue or within
white cells (Fig. 3, D and F). Bovine a-tu-
bulin mRNA was distributed uniformly
throughout the same tissue specimens, dem-
onstrating the specificity of the LAP mRNA
response.

LAP mRNA or closely related tran-
scripts were detected in many of the ex-
posed epithelial surfaces of the cow (Fig. 4),
including sites in the conjuctivae, bronchi,
colon, and urinary tract (15). The presence
of LAP mRNA in so many epithelial sur-
faces suggests that antibiotic peptides may
contribute to the defensive machinery of
many mammalian epithelial surfaces that
are exposed to microbes.

LAP mRNA was not detected in third-
trimester fetal tongue but is abundant in
tongues from cows and 4-month-old calves
(Fig. 4A). Induction may occur as a result of
exposure of the animal to microbial or viral
agents, or, alternatively, it may be under
developmental regulation. In either in-
stance, LAP appears to be expressed at a
constitutive level in bovine tongue after
birth and is induced further in response to
injury and infection.

Our observations in a mammal parallel
the experimental data from insects demon-
strating induction of cecropin mRNA in the
epithelial cell layer of silkworm larvae after
epicuticular and cuticular wounding (16).
Induction occurs when abraded larvae are
challenged with living bacteria or bacterial
cell wall components. In primary cultured
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Fig. 4. Tissue and developmental distribution of LAP mRNA. (A) General tissue distribution of LAP mRNA
among bovine tongue and other organs (lanes 1 to 6), and developmental stages of LAP mRNA in bovine
tongue (lanes 7 to 9). (B) Tissue distribution of LAP mRNA organized by system: tongue and epithelia from
the face (lanes 1 to 4), choroid plexus (lane 5), respiratory tract (lanes 6 to 8), male and female
reproductive tracts (lanes 9 to 14), genitourinary tract (lanes 15 and 16), and gastrointestinal tract (lanes
17 to 29). Hybridization to a bovine a-tubulin probe is shown as a control for the amount of RNA present

in each lane.
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bovine tracheal epithelial cells, TAP mRNA
abundance was increased at least fivefold by
addition of lipopolysaccharide (LPS) to the
culture medium (17). The genes for TAP
and several insect antimicrobial peptides
contain a binding site for nuclear factor kB
(NF-kB) in the 5’ region; this site is impli-
cated in LPS responsiveness of the antimi-
crobial peptide and other genes important in
inflammatory reactions (18-20). TAP
mRNA is also increased in cultured tracheal
epithelial cells by cytokines such as tumor
necrosis factor (TNF) (21). TNF expression
by macrophages is stimulated by exposure to
LPS (22). Thus, increased expression of LAP
in the tongue epithelium at sites of injury or
infection may result from direct stimulation
by bacteria or from the production of cyto-
kines at the injury site. Because defensins
attract monocytes (23), the possible inter-
play between LAP expression and inflamma-
tion has the potential to generate a robust
response to microbial and viral invasion.

In the context of mammalian mucosal
defenses, which include immunoglobulin
antibody production and secretion, T and B
cell-mediated responses, and cytokine syn-
thesis, the production of broad-spectrum
antibiotics might contribute to the freedom
from continuous infection that characteriz-
es many epithelial surfaces of vertebrates.
Inducible antibiotics such as LAP may play
a role in the sterilization of injured tissue. In
addition, they may participate in wound
repair, given that defensins exhibit growth
factor activity in vitro and in vivo (23).
The association between epithelial injury or
infection, inflammation, and defensin ex-
pression may have medical significance. For
example, defensins inactivate many envel-
oped viruses that can infect or penetrate
mucosal surfaces, including herpes simplex
virus and human immunodeficiency virus
(24-26). Elucidation of the regulatory
mechanisms responsible for stimulation of
the expression of epithelial defensins may
have therapeutic applications in enhancing
mucosal immunity.
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Modulation of Serotonin-Controlled Behaviors
by G, in Caenorhabditis elegans

Laurent Ségalat, Daniel A. Elkes, Joshua M. Kaplan*

Seven transmembrane receptors and their associated heterotrimeric guanine nucle-
otide-binding proteins (G proteins) have been proposed to play a key role in modulating
the activities of neurons and muscles. The physiological function of the Caenorhabditis
elegans G protein G, has been genetically characterized. Mutations in the goa-17 gene,
which encodes an « subunit of G, (Ga,), cause behavioral defects similar to those
observed in mutants that lack the neurotransmitter serotonin (5-HT), and goa-7 mutants
are partially resistant to exogenous 5-HT. Mutant animals that lack Ga, and transgenic
animals that overexpress Go, [goa-7(xs) animals] have reciprocal defects in locomo-
tion, feeding, and egg laying behaviors. In normal animals, all of these behaviors are
regulated by 5-HT. These results demonstrate that the level of G, activity is a critical
determinant of several C. elegans behaviors and suggest that G_ mediates many of the

behavioral effects of 5-HT.

Changes in environmental conditions or
physiological status often produce global
changes in the behavior of animals. Two sets
of experimental results suggest that seven
transmembrane receptors (7-TMRs) and G
proteins play a pivotal role in the modula-
tion of behavior. First, synaptic signals pro-
duced by 7-TMRs are well suited to the task
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of promoting long-term changes in behavior
because G proteins typically regulate the ac-
tivities of neurons and muscles by means of a
cascade of second messengers (I). Second,
neurotransmitters that act on 7-TMRs (that
is, metabotropic agonists) are potent modu-
lators of many behaviors (2). However, the
specific receptors and G proteins that medi-
ate the response to a particular agonist are
often not known.

We have genetically analyzed signaling
by the metabotropic agonist 5-HT in Cae-
norhabditis elegans. It has been proposed that





