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Massive Cell Death of Immature Hematopoietic 
Cells and Neurons in Bcl-x-Deficient Mice 

Noboru Motoyama,* Fanping Wang,* Kevin A. Roth," 
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bcl-x is a member of the bcl-2 gene family, which may regulate programmed cell death. 
Mice were generated that lacked Bcl-x. The Bcl-x-deficient mice died around embryonic 
day 13. Extensive apoptotic cell death was evident in postmitotic immature neurons of 
the developing brain, spinal cord, and dorsal root ganglia. Hematopoietic cells in the liver 
were also apoptotic. Analyses of bcl-x double-knockout chimeric mice showed that the 
maturation of Bcl-x-deficient lymphocytes was diminished. The life-span of immature 
lymphocytes, but not mature lymphocytes, was shortened. Thus, Bcl-x functions to 
support the viability of immature cells during the development of the nervous and he- 
matopoietic systems. 

Apoptosis (programmed cell death) is a 
poorly understood process that occurs in 
many tissues during early development and 
throughout adult life in many organisms. 
The  protooncogene bcl-2, whose gene prod- 
uct inhibits certain forms of apoptosis ( I ) ,  is 
widely expressed during mouse develop- 
ment and in long-lived cells such as neu- 
rons and stem cells of many tissues in a n  
adult mouse (2). Although early embryonic 
lethality was expected on  the basis of its 
expression pattern, bcl-2-ablated mice were 
shown to remain viable, and major abnor- 
malities were limited to the hair color, poly- 
cystic kidney development, and decreased 
lymphoid cell life-span (3, 4). In particular, 
the nervous system developed normally. 
These findings may be attributed to redun- 
dancy, because bcl-2 is only one of a larger 
family of related genes (5,  6).  As expected, 
other members of the bcl-2 family can in- 
hibit apoptosis in in vitro assays (5,  6).  

bcl-x, a member of the bcl-2 gene family, 
can be alternatively spliced to produce two 
protein isoforms (Bcl-xL and Bcl-xs), one of 
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which (Bcl-x,) inhibits apoptosis (6). Bcl-x 
in mice is expressed highly during develop- 
ment and in the brain, thymus, and kidney 
in adult, predominantly in the Bcl-x, form 
(7, 8). T o  elucidate the functional and 
developmental role of Bcl-x, we used ho- 
mologous recombination in embryonic stem 
(ES) cells to generate mice lacking both 
Bcl-x, and Bcl-xs (9) (Fig. 1). Heterozygous 

A 
9.8 kb 

bcl-x locus E X B B  S E 

- 
!AT$ probe I kb 

B 
neo-targeted locus 7.0 kb 

E E S E 

hyg-targeted locus 5.5 kb 
E E E S  E -m , 

Fig. 1. Target disruption of the bcl-x gene (9). (A) 
Genomic structure surrounding coding exon of 
mouse bcl-x, and structure of the pXKO-NEO and 
pXKO-HYG targeting vectors. The position of 
translation initiation site is shown (ATG). (B) Pre- 
dicted structure of the targeted bcl-x locus. The 
location of the hybridization probe, a 0.4-kb Kpn 
I-Pst I fragment, and expected sizes of the Eco RV 

631 10, ~ S A .  fragments that hybr~dize with the probe are indl- 
*These authors contributed equally to this report. cated. B, Bam HI; E, Eco RV; S,  Spe I ;  X, Xho I .  
tTo whom correspondence should be addressed. The restriction map of Bam HI is not complete. 
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mutant mice (bcl-x+l-) were healthy and 
normal in size. Homozygous mutant mice 
(bcl-x-I-) died around 13 days of gestation 
(E13) (Table 1). 

Embryos from E11.5, 12.5, and 13.5 bcl- 
x-I-, bcl-x+l-, and wild-type mice were hii- 
tologically examined. E11.5 bcl-x-I- mice 
were histologically similar to heterozygotes 
and wild-type mice with one major excep- 
tion. Throughout the brain and spinal cord 
in the regions containing postmitotic, differ- 
entiating neurons, there was extensive cell 
death. In the most mature regions of the 
E11.5 nervous system, the rostral spinal cord 
and brain stem, there were large areas con- 
taining pyknotic nuclei, karyorrhectic debris, 
and frequent phagocytic cells with engulfed 
debris (Fig. 2). The histologic appearance of 
the degenerative zones in the bcl-x-I- mice 
resembles that seen in regions of naturally 
occurring neuronal cell death ( 10); however, 
the magnitude of cell death and its neuro- 
anatomic distribution exceeds that seen in 
wild-type and heterozygote littermates. 

By E12.5, extensive areas of neuronal 
degeneration were seen throughout the ma- 
turing bcl-x-1- brain, including the dien- 
cephalon, midbrain, and caudal spinal cord. 
Although naturally occurring neuronal cell 
death was seen in E12.5 wild-type and het- 
erozygote mice in regions such as the rostral 
spinal cord and dorsal root ganglia, there 
was no evidence of massive, diffuse cell 
death as seen in the bcl-x-1- mice. 

The degenerative changes in the bcl- 
x-1- nervous system appeared to be local- 
ized to regions of differentiating neurons. 
Because these mice had already died before 
mature neuronal phenotypes could be iden- 
tified by histologic stains, we further char- 
acterized the zones of death by microtubule- 
associated protein 2 (MAP2) immunoreac- 
tivity (Fig. 2, F to H). The MAP2 protein is 
neuron-specific and is expressed during em- 
bryonic brain development ( 1 1 ). Immuno- 
histochemical staining of E11.5 and 12.5 
wild-type and bcl-x-1- brain and spinal cord 
showed that cells in the mitotically active 
ventricular zone lacked MAP2 immunore- 
activity, but that more peripherally located 
differentiating cells possessed strong MAP2 
staining. The vast majority of degenerating 
cells, idzntified by bisbenzamide staining, 
were located in MAP2-positive regions. 
The identification of the bisbenzamide-pos- 
itive apoptotic cells in the bcl-x-I- nervous 
system as neurons is further supported by 
recent in vitro experiments. After 2 days in 
2% fetal calf serum containing medium, 
primary dissociated E12.5 bcl-x-1- telence- 
phalic cell cultures contained three times as 
many condensed or clumped bisbenzamide- 
labeled nuclei and only 30% of the number 
of neurofilament heavy chain immunoreac- 
tive neurons as heterozygote and wild-type 
cultures (8). These results also suggest that 

Fig. 2 Histologic appearance of El 1.5 wild-type (A and D) and bc/-x-I- (6, C, and E) brainstem (A to C) 
and spinal cord @ and E) (25). A hematoxylin-eosin-stained section of the rostral pons from a wild-type 
mouse (A) shows immature neuroepithelial cells adjacent to the foum ventride (upper right comer) and 
ventrally located d i t i a t i n g  cells. Asimihrly located section from abc-x-I- animal (B) reveals extensive 
cell death of the differentiating neuroepiilial cells. High magnification (C) shows pyknotic nuclei, kmy- 
orrhectic debris, and distended phagocytic cells. A sagittal section of the rostral spinal cord from a 
wild-type mouse (D) shows occasional pyknotii nuclei and phagocytic cells in the ventral spinal cord 
(indicated by arrows). In comparison, the spinal cord of am-x-I- mouse (E) contains enormous numbers 
of dead cells and phagocytes. MAP2 immunolabeling (F and H) and bisbenzamide staining (G and H) of 
E12.5 bd-x-I- brainstem (F to,H). The ventricular zone (labeled V) shows little MAP2 immunoreactivity, 
whereas cells located in the ventral medulla possess strong, bright red-fluorescent MAP2 immunoreac- 
t i i  (F). Bisbenzamide staining (G) shows nmnal d i  blue fluorescent nuclear staining of the ventricular 
zone cells (labeled V) and numerous clumped, fragmented, bright b l u M t e  fluorescent nuclei (indicated 
by arrows) in the ventral medulla. Double exposure of MAP2 immunofluorescence and bisbenzamide 
Wing (H) shows weak MAP2 staining of the densely packed, immature cells of the ventricular zone 
(hbeled V) and strong MAP2 labeling of cells in the differentiated zone, including some cells with abnormal 
bisbenzamide-stained nuclei (indicated by short arrows). Clusters of abnomal bisbenzamide-stained 
nuclei can be seen within phagocytes (indicated by arrows). Scale bars, 50 pm. 

Table 1. Embryonic lethality of Bcl-x null mutation (23). 

Total Number of Genotype of mm-nal Number of 
Age (days) concept- normal-Irking embryos abnormal 

uses embryos +I+ +I- -1- embryos* 

*NI abnormal embryos were homozygws mutant @d-x-'-) mice and had died. 
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the increased neuronal death observed in C57BL16 (B6) and recombination activat- thymus, there was a reduction in the propor- 
the bcl-x-I- nervous system in vivo repre- ing gene4 (RAG-2)-deficient mice to tion of mature CW+ or CD8+ single posi- 
sents a primary event and is not simply generate chimeric mice (B6 and RAG-2 tive (SP) thymocytes (Fig. 5A and Table 2). 
secondary to the hematopoietic dysfunction chimeric mice, respectively). The thymocytes that did differentiate were 
described below. In the chimeric mice, the maturation of derived from injected bcf-x-I- ES cells, as 

To further define the degenerative bcl-x-1- T and B cells was reduced. In the determined by Southern (DNA) blot analy- 
changes observed in bcl-x-1- embryos, we 
stainid sections of E12.5 mutant aid wild- 
type mice by the terminal-deoxytransfer- 
ase (TdT)-mediated deoxyuridine aiphos- 
phate (dUTP)-biotin nick end-labeling 
(TUNEL) method to identdy apoptotic 
cells (12) (Fig. 3). In wild-type mice, occa- 
sional TUNEL-labeled nuclei were ob- 
served in the sp&l cord and dorsal root 
ganglia. In comparison, mutant mice had an 
increase in the number of TUNEL-labeled 
nuclei in these sites, as well as in nonpro- 
liferative zones throughout the central ner- 
vous system (8). We also found a threefold 
increase in TUNEL-labeled nuclei in histo- 
logically identifiable hematopoietic cells in 
E12.5 bcl-x-1- liver compared to heterozy- 
gote and wild-type tissue (Fig. 3, C and D). 
TO address the localization- of bcl-x tran- 
scripts, we detected mRNA in E12.5 wild- 
type tissue sections by in situ hybridization 
(Fig. 4). Consistent with our findings that 
differentiating neurons in the intermediate 
zone and hemato~oietic cells in the liver 
showed extensiv; apoptosis in bcl-x-1- 
mice, the bcl-x mRNA was expressed in 
those regions in wild-type mice. Because 
much of the observed cell death in the 
bcl-x-I- nervous system occurred prior -to, 
or coincident with, terminal differentiation, 
it is unlikely that lack of target-derived 
neurotrophic factors or synaptic activity 
could account for the neuronal destruction. 
These findings suggest that programmed 
cell death in the developing brain and he- 
matopoietic system is critically dependent 
on Bcl-x expression. 

The lymphoid system is the second tis- 
sue where extensive apoptosis occurs and 
was found to be severely affected in- the 
Bcl-2-deficient mice (3,4). Because of ear- 
ly embryonic' lethality, we could not study 
the effect of Bcl-x absence on lymphocytes 
in the germline mutant mice. To study the 
function of Bcl-x in lymphocytes, we used 
the double-knockout method (9, 13, 14). 
We injected the .bcl-x-1- ES or parental 
wild-type ES cells into the blastocysts from 

I- I 
Fig. 4. In situ hybridiiions of E12.5 wild-type (A and C) and bc-x-I- (6 and D) brain (A and 6) and l i r  
(C and D) (27). bcl-x mRNA was highly localized in the intermediate zone (labeled I) of the developing brain 
(A) and in the liver (C) of the wild-type mice. In comparison, bc-x-I- mice had few grains similar to 
background level (6 and D). Arrowheads indicate the border between ventricular (labded V)  and 
intermediate zones. Left side, intermediate zone; right side, ventricular zone. 

Table 2. Proportion of lymphocyte populations in chimeric mice (24). Data show the proportion among Ly9.1+ lymphocytes in 86 chimeric mice. SP, single 
positive; DP, double positive; EM, bone marrow; and IN, lymph node. 

ThYmoCytB BM cells IN cells Splenocytes 
Genotype 

SP DP B220+lgM- B220+lgM+ T B T B 
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sis (8, 15). In the bone marrow (BM), the 
proportion of mature B cells was reduced 
(Fig. 5B and Table 2). In the B6 chimeric 
mice, the proportion of B220d""IgM- cells 
was decreased (Table 2). This decrease was 
not evident in the RAG-2 chimeric mice 
because B220d""IgM- cells were also derived 
from RAG-2 blastocysts (14). Forward scat- 
ter parameter analysis (1 6) showed that 
small pre-B cells rather than the large pro-B 
cells in the B220d""IgM- population were 

preferentially decreased in both the B6 
and RAG-2 chimeric mice (Fig. 5C)  (8) .  
In contrast, lymph node (LN) and spleen 
cells of bcl-x-1- chimeric mice showed 
normal population distribution, although 
the ratios of mature T and B cells were 
decreased (Table 2). Thus, bcl-x-1- lym- 
phocytes can differentiate into mature 
cells, although the total number of mature 
lymphocytes generated is decreased. 

Thymocytes, BM, and LN cells were cul- 

A 0 hours 48 hours B 0 hours 48 hours 

CD8 t IgM + 
Fig. 5. Flow cytometric analysis of thymocytes and BM 
cells (24). Thymocytes (A) and BM cells (B) from control C Wild type bcl-xb 

(upper panels) and bcl-x-/- RAG-2 chimeric mice 

5 

(lower panels) were stained for CD4 and CD8 (A) or 
8220 and gM (B) and analyzed before (left panels) and $ 
after (right panels) 48-hour culture. The CD4-CD8- = 
double negative (DN) population was increased in both 8 
wild-type and bcl-x-/- thymocytes because DN thy- Forward scatter 
mocytes contain the cells from RAG-2 blastocysts be- t 

sides those from ES clones (14). BM cells (C) from control (left panel) and bcl-x-/- B6 chimeric mice (right 
panel) were gated on Ly9.1 +B22OdU",lgM- population and cell size by forward scatter analysis. 

Fig. 6. In vitro cell survival of thy- 
A ~ c ~ m e d  T C R ~ ~  

C 
mocytes and BM and LN cells. Mature T  cells 
Assays were performed as de- 
scribed (3). TCRmed (A), TCRhl 
thymocytes (B), LN T cells (C), , ao 

B220+ BM cells (D), and LN B 5 
cells (E) from bcl-x-'- (closed cir- 2 60 

cles) and control (open circles) '$ 40 

B6 chimeric mice were cultured m 
for the indicated times. Experi- 20 

ments shown were done with 
three knockout and three control 

0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50 chimeras. Experiments were also 
performed with chimeras derived Time (hours) 

from different independent ES 
cell lines with similar results. D E 

B220+ BM cells Mature B cells 
100 

- 60 

m 
20 

0 10 20 30 40 50 0 10 20 30 40 50 

Time (hours) 

tured for examination of in vitro life-span. 
Among thymocytes, bcl-x-I- TCRmed cells, 
but not TCRh' cells, died more quickly than 
controls (Fig. 6, A and B). Most bcl-x-I- 
double-positive (DP) thymocytes disap- 
peared during a #-hour culture (Fig. 5A). 
The bcl-x-I- B220+ BM cells behaved sim- 
ilarly (Fig. 6D). O n  the basis of staining 
patterns of B220 versus IgM or of B220 
versus IgD (8), B22OdU"IgM- and immature 
B cells (B22OdU"IgM+IgD- cells) were in- 
volved (Fig. 5B). However, life-spans of mu- 
tant LN T and B cells were comparable to 
those of controls (Fig. 6, C and E), whereas 
mature T and B cells in bcl-2-1- LN cells are 
mostly apoptotic (3, 4 ,  17). Thus, the ab- 
sence of Bcl-x affects the life-span and ap- 
optosis of developing immature lymphoid 
cells rather than of their mature counter- 
parts, whereas in the bcl-2-1- mice this pat- 
tern is reversed (3, 4 ,  1 7). 

The abnormality we observed in the 
lymphoid system is similar to that which 
occurs in c-abl-deficient mice (1 8). Simi- 
larly, the abnormalities found in the ner- 
vous and hematopoietic systems are similar 
to those observed in rb-deficient mice (19). 
In the rb-deficient mice, differentiating 
neurons die in the brain and spinal cord, 
and hematopoiesis in the liver is abnormal. 
However, unlike in rbPi- brain, increased 
mitosis was not observed in bcl-x-1- brain. 
The c-Abl protein interacts physiologically 
with Rb protein (20), and both may be 
involved in cell cycle controls (21, 22). 
These similarities and observations suggest 
the possibility of a functional connection 
between Bcl-x, c-Abl, and Rb. 
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Synaptic Desensitization of NMDA Receptors 
by Calcineurin 

Gang Tong," Dawn Shepherd, Craig E. Jahr? 

Desensitization is a phenomenon that is common to many ligand-gated ion channels but 
has been demonstrated only rarely with physiological stimulation. Numerous studies de- 
scribe desensitization of the N-methyl-D-aspartate (NMDA) subtype of glutamate receptor 
by exogenous agonists, but whether synaptic stimulation causes desensitization has been 
unknown. Synaptic stimulation of NMDA receptors on rat hippocampal neurons resulted in 
desensitization that was prevented by intracellular 1,2-bis(o-aminophenoxy)ethane- 
N,N,N',Nr-tetraacetic acid (BAPTA), adenosine-5'-0-(3-thiotriphosphate) (ATP-y-S), or in- 
hibitors of phosphatase 2B (calcineurin), but not by inhibitors of phosphatases 1 and 2A or 
of tyrosine phosphatases. Synaptic NMDA receptors may fluctuate between phosphoryl- 
ated and dephosphorylated forms, depending on the rate of synaptic stimulation and the 
magnitude of the associated influx of calcium through NMDA receptors. 

T h e  magnitude of Ca2+ influx through syn- 
aptically activated NMDA receptor chan- 
nels not onlv affects the am~li tude and life- 
time of lonLterm synaptic $asticity at cer- 
tain central svnaDses, but also is a factor in 
whether subsequent synaptic strength is in- 
creased or decreased ( 1-3 ). Several suecies of . . 
protein phosphatases cause diminished 
NMDA channel activity (4-6), which may 
result in decreased Ca2+ influx during syn- 
aptic stimulation. In addition, calcineurin 
activity stimulated by brief elevations of in- 
tracellular Ca2+ concentration (7) causes 
the development of a gl~cine-insensitive 
form (8, 9) of NMDA receptor desensitiza- 
tion. Because NMDA receptor channels are 
very permeable to Ca2+ ( lo) ,  synaptic acti- 
vation mav enable this form of desensitiza- 
tion and may result in a negative feedback of 
NMDA receptor synaptic activation. If de- 
sensitization is enhanced by synaptic stimu- 
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lation, the decrease in ion flux will result in 
smaller intracellular Ca2+ transients that 
could shift the balance between long-term 
potentiation (LTP) and long-term depres- 
sion (LTD) of synaptic strength (1-3). 

Isolated cultured rat hippocampal neu- 
rons make synapses onto themselves (1 1) 
and were used to measure NMDA receptor 
desensitization induced by synaptic stimula- 
tion. The synapses were conditioned by 
stimulating them four times within 75 ms 
(12) and were tested wlth a single stimulus 
after a variable interval (0.8 to 7.5 s). The 
depression of the test excitatory postsynaptic 
current (EPSC) relative to the first condi- 
tioning EPSC could result from a combina- 
tion of a lower presynaptic release probabil- 
ity (synaptic depression or presynaptic inhi- 
bition) and a decreased sensitivitv of 
postsyAaptic receptors (desensitization).' The 
amount of depression resulting from NMDA 
receptor desensitization was estimated by 
comparing the amplitudes of test EPSCs 
conditioned by the four-pulse conditioning 
stimulus delivered in the presence or absence 
of the competitive antagonist of the NMDA 
receptor, D-2-amino-5-phosphonopentanoic 
acid (D-AP5, 100 p+M) (Fig. 1A). In the 
presence of D-AP5, glutamate released by 
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