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Neurons exhibit a wide range of properties in addition to postsynaptic potential (PSP) 
summation and spike generation. Although other neuronal properties such as paired- 
pulse facilitation (PPF) and slow PSPs are well characterized, their role in information 
processing remains unclear. It is possible that these properties contribute to temporal 
processing in the range of hundreds of milliseconds, a range relevant to most complex 
sensory processing. A continuous-time neural network model based on integrate-and- 
fire elements that incorporate PPF and slow inhibitory postsynaptic potentials (IPSPs) 
was developed here. The time constants of the PPF and lPSPs were estimated from 
empirical data and were identical and constant for all elements in the circuit. When these 
elements were incorporated into a circuit inspired by neocortical connectivity, the 
network was able to discriminate different temporal patterns. Generalization emerged 
spontaneously. These results demonstrate that known time-dependent neuronal prop- 
erties enable a network to transform temporal information into a spatial code in a 
self-organizing manner-that is, with no need to assume a spectrum of time delays or 
to custom-design the circuit. 

T h e  elements in most neural network mod- 
els consist of simple interconnected units 
that take the weighted sum of their inputs 
and generate an output by means of an ac- 
tivation function (1).  These elements are 
meant to represent the summation of fast 
excitatory and inhibitory PSPs (EPSPs and 
IPSPs, respectively) and spike generation. 
Indeed, these models have been effective in 
performing complex computations and have 
provided many insights into how the ner- 
vous system processes information. Neurons, 
however, exhibit many additional properties, 
such as PPF, paired-pulse depression, volt- 
age-dependent excitatory currents, rebound 
facilitation, bursting, and slow IPSPs and 
EPSPs (2). To  date. few models have incor- , , 

porated these properties, in part because the 
role of these properties in information pro- 
cessing is unclear. One possibility is that 
these properties contribute to the processing 
of temporal information in the range of tens 
to hundreds of milliseconds. Most network 
models have dealt primarily with tasks in 
which information is encoded in the spatial 
patterns of the inputs (1,  3); yet, the nervous 
system must also extract information from 
the temporal features of input patterns. 
Speech recognition, frequency discrimina- 
tion, music perception, and motion process- 
ing are a few tasks in which information is 
encoded in the tem~oral  domain (4).  It is . , 

not known how even a simple task such as 
discriminating between taps or tones pre- 
sented at different intervals is solved, be- 
cause such a solution cannot be based on 
spatial information from the inputs. 
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To  address whether time-dependent 
neuronal properties may underlie temporal 
processing, we used a neural network com- 
posed of integrate-and-fire elements that 
incorporated PPF and slow IPSPs in addi- 
tion to fast EPSPs and IPSPs (5) (Fig. 1). 
We  focused on PPF and slow IPSPs be- 
cause they have been described in some 
detail in cortical neurons (6-8) and can 
be incorporated efficiently into integrate- 
and-fire units. Furthermore, PPF may be 
particularly relevant to  temporal process- 
ing because EPSP amplitude provides tem- 
poral information about recent spike oc- 
currence. The  time constants of the slow 
IPSPs and PPF were based on empirical 
data (6 ,  7) and were the same for all 
elements. Excitatory (Ex) and inhibitory 
(Inh)  elements were incorporated into a 
randomly connected circuit representing 
cortical layers 4 and 3 (9). 

The simplest task studied was interval 
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discrimination: two oulses were oresented 
on the same input channels, with different 
intervals between them (Fie. 2). Each ~ u l s e  - 
represented a brief input such as a tap, tone, 
or flash. The first pulse of a stimulus initi- 
ated a set of excitatory and inhibitory in- 
teractions in the network (Fig. 2). Because 
of time-dependent changes imposed by PPF 
and slow IPSPs, the network is in a different 
state at the arrival of the second pulse. 
Thus, even if the second pulse is identical 
to the first some units will have different 
probabilities of firing depending on the in- 
terpulse interval. Indeed, between 25 to 
50% of the Ex3 units exhibited interval- 
sensitive responses. These units can be used 
to encode temporal information. To  dem- 
onstrate this in a more quantitative man- 
ner, we added an output layer to the net- 
work and trained it to recognize interval- 
specific patterns produced in layer 3 by five 
different stimuli (80-, 130-, 180-, 230-, and 
280-~ns intervals). All Ex3 units were con- 
nected to a number of output units equal to 
the number of stimuli being discriminated. 
A supervised learning rule was used to train 
each output unit to respond to a given 
stimulus (10). The outpur layer and the 
supervised learning rule are not meant to be 
part of a realistic simulation of temporal 
processing but a method to determine 
whether the activity pattern in the network 
can discriminate between different inter- 
vals. With the exception of changes in con- 
nection weights between the Ex3 and out- 
put units during training, there was no plas- 
ticity in the connection weights or time 
constants at any level of the network. After 
training, output units spiked (spikes are rep- 
resented in yellow in Fig. 2) in response to 
the appropriate stimulus, which demon- 
strates that activity patterns produced in 
the Ex3 units contain sufficient informa- 
tion to code for temporal intervals (Fig. 2). 

In addition to performing temporal dis- 
criminations, a biologically plausible model 

Fig. 1. Integrate-and-fire elements that incorpo- 
rate slow lPSPs and PPF. Traces represent the 
voltages of the simulated integrate-and-fire ele- 
ments. (A) Slow IPSP. By triggering a spike in the 
lower excitatory unit (Ex), a suprathreshold EPSP 
is elicited in the inhibitory unit (Inh), producing a 
fast EPSP followed by a slow IPSP in the upper Ex 
unit. For illustrative purposes, the connection 
strengths were increased. (B) PPF. The second of 
two consecutive spjkes in an Ex unit will produce a 
larger EPSP in the postsynaptic unit. (C) PPFfunc- 
tion. The time course and magnitude of the facili- 
tation were estimated from empirical data from 
CAI pyramidal neurons (5). For control experi- 
ments, the time-varying profiles of the slow IPSP 
and PPF were transformed into a step function 
from 30 to 300 ms, as shown by the dashed lines 
in (A) and (C). 
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must exhibit generalization in the temporal 
dimension. The network was therefore test- 
ed with intervals varying from 30 to 330 ms, 
and interval tuning curves were constructed 
for the output units (Fig. 3A). Although 
each output unit had been trained to re- 
spond to one of five stimuli, each exhibited 
a tuning curve centered around its trained 

interval. With these tuning curves, the net- 
work can represent any given interval be- 
tween 30 and 300 ms by using a population 
code-that is, by using a combination of 
these units. Note that output unit 5, trained 
at the 280-ms interval, was significantly 
worse because a 280-ms interval approaches 
the limit of the time constants of the net- 
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Fig. 2. Actlv~ty plot of the network In response to three d~fferent double-pulse st~mul~. The four main blocks 
( 6 4 ,  lnh4, &3, and lnh3) represent a sample of the units of the specified layer and unit type. Each 
horizontal line within each block represents the voltage of a given unit in time. Spikes are represented in 
yellow. Each stimulus consists of two pulses in which the second pulse was given at either 80,130, or 180 
ms. Each pulse consisted of a 5-ms burst of spikes in 50 of the input fibers. The plots of the shorter stimuli 
are overlaid on top of those of the longer stimuli. The output layer shows the response of three output 
units after they were trained to discriminate activity patterns of the Ex3 units elicited by the 80-, 130-, and 
180-ms intervals. 
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Fig. 3. Discrimination and generalization of temporal patterns. (A) To analyze the ability of the network to 
generalize, we tested it with double-pulse stimuli for intervals between 30 and 330 ms (1 0-ms steps), and 
interpulse interval tuning curves were then constructed. (6) The same network was also trained to 
discriminate between four stimuli consisting of 400-ms trains of pulses at frequencies of 5,10,20, and 40 
Hz. After training the output units to recognize frequency-specific patterns, we tested the network with 20 
frequencies (3 to 80 Hz). Tuning curves were constructed from 100 and 50 presentations of each stimulus 
for (A) and (B), respectively. 

work. To demonstrate that the ability of the 
network to perform temporal discrimina- 
tions was a result of the time dependency of 
the PPF and the slow IPSPs, we performed 
a control experiment in which PPF and 
slow IPSPs followed a step function (dashed 
lines in Fig. 1). In these control simulations, 
the output units were unable to discrimi- 
nate among any of the trained intervals. 

To examine the abilitv of the network to 
discriminate complex temporal patterns, we 
tested it with three tasks: frequency, random 
pattern, and phoneme discriminations. In 
the frequency discrimination task, each out- 
put unit was trained to one of four frequen- 
cies (5, 10, 20, and 40 Hz). After training, 
the network was tested with a range of fre- 
quencies. Each output unit exhibited a tun- 
ing curve centered around the frequency on 
which it was trained (Fig. 3B). The second 
task consisted of trainine the network to 

L 7  

discriminate between four stimuli, each con- 
sisting of four pulses with randomly assigned 
interpulse intervals. Again, each output unit 
responded preferentially to the stimulus it 
was trained on (Fig. 4A); thus, each output 
unit was driven by a population of stimulus- 
svecific Ex3 units. The third task consisted 
of using synthetic phonemes. Speech percep- 
tion is a preeminent example of a task that 
relies on temporal cues. An important cue 
for discriminating voiced and unvoiced pho- 
nemes (that is, /ba/ and /pa/) is the voice- 
onset time (VOT; the time between air re- 
lease and vocal cord vibration). /Ba/ tends to 
have a VOT of less than 30 ms, whereas /pa/ 
has a VOT of more than 30 ms ( I  1 ). We 
trained a network with two outputs to dis- 
criminate /ba/ and /pa/ by training it with the 
two shortest (10 and 20 rns) and the two 
longest (70 and 80 ms) VOTs, and then we 
tested it with intermediate values (12). After . , 

training, the output units exhibited a re- 
sponse curve qualitatively similar to that ob- 
served psychophysically (I 1 ) (Fig. 4B). 

We have shown that by using elements 
with realistic neuronal properties, temporal 
processing emerges as a result of state-depen- 
dent changes imposed on network dynamics. 
Without the need to change any model 
parameters, the network was able to perform 
interval, frequency, and complex pattern 
discrimination and to generalize to similar - 
temporal patterns. We expect that increas- 
ing the complexity of the elements by in- 
cluding other neuronal properties and incor- 
porating plasticity will further improve per- 
formance. A common form of associative 
plasticity, known as Hebbian plasticity, es- 
tablishes that synaptic strength increases if 
both the pre- and postsynaptic elements are 
coactive. However, simulations that incor- 
porated Hebbian plasticity made clear the 
difficulties of generalizing Hebb's rule to 
continuous-time networks with time-varv- 
ing inputs. Hebbian plasticity leads units 
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Fig. 4. (A) Discr~rn~nat~on of a random sequence of pulses. The network was trained to discriminate 
between four st~mull, each composed of four 5-ms pulses (arrows) w~th randomly chosen interpulse 
intervals between 50 and 250 ms. (6) Phoneme discrimination. The two output units were trained to 
discriminate 1 0  and 20-ms VOTs (perceived as /ba/) from 70- and 80-ms VOTs (perceived as /pa/). The 
network was then tested at all VOTs. Tuning curves were constructed from 100 presentations of each 
stimulus. 
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