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Terminal differentiation is coupled to withdrawal from the cell cycle. The cyclin-dependent 
kinase inhibitor (CKI) p21 Cip' is transcriptionally regulated by p53 and can induce growth 
arrest. CKls are therefore potential mediators of developmental control of cell proliferation. 
The expression pattern of mouse p21 correlated with terminal differentiation of multiple cell 
lineages including skeletal muscle, cartilage, skin, and nasal epithelium in a p53-indepen- 
dent manner. Although the muscle-specific transcription factor MyoD is sufficient to activate 
p21 expression in 10T112 cells, p21 was expressed in myogenic cells of mice lacking the 
genes encoding MyoD and myogenin, demonstrating that p21 expression does not require 
these transcription factors. The p21 protein may function during development as an in- 
ducible growth inhibitor that contributes to cell cycle exit and differentiation. 

Proper development of a multicellular or- 
ganism is complex and requires precise spa- 
tial and temporal control of cell prolifera- 
tion. A large network of regulatory genes has 
evolved to specify when and where in the 
embryo cells divide. This control is superim- 
posed upon the basic cell cycle regulatory 
machinery. 

Cell proliferation requires the action of 
cyclins, which serve as activators of their 
cognate cyclin-dependent kinases (Cdks). 
( I )  D- and E-type cyclins have been impli- 
cated in controling passage through the "re- 
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striction" point (2), after which cells become 
committed to a round of cell division (3). G, 
cyclin accumulation is required for cell cycle 
entry and members of this family, particular- 
ly D-cyclins, have been identified as targets 
of growth factors ( I  ). 

Equally important in the execution of 
developmental programs is the arrest of 
growth once the program is complete. 
Whereas the control of terminal differentia- 
tion may be mediated by multiple, possibly 
redundant, mechanisms, cell cycle arrest 
through inactivation of Cdks is likely to be a 
central feature. Possible mediators of such 
negative control are two classes of Cdk in- 
hiiitory (CKI) proteins typified by p21C1P' 
(4) and p161NK41MTS1 (5). The p21 protein 
inhibits G l  cyclin complexes containing 
Cdk2, Cdk3, Cdk4, and Cdk6 and is tran- 
scriptionally induced by overexpression of 
the tumor suppressor protein p53 (6) or by 
activation of p53 after DNA damage, con- 
sistent with a role for p21 in the p53-depen- 
dent G, checkpoint (7). 

The ability of p21 to function as an in- 
ducible cell cycle inhibitor suggests that it 



might also function to mediate cell cvcle 
arrest during development. Thus, knowlLdge 
of the timing and location of p21 expression 
in the embryo could provide evidence that 
this CKI participates in terminal differenti- 
ation in a developing organism. Because p53 
regulates transcription of p21 in vitro (6, 7), 
we also tested whether ~ 2 1  ex~ression in 
vivo was dependent upon p53. 

We used in situ hybridization (ISH) to 
probe for p21 expression during mouse em- 
bryogenesis (8). Embryos of day 7.5 post 
coitum (p.c.) (0 to 5 somites) showed no 
expression of p21. By day 8.5 p.c., we detect- 
ed hvbridization alone the midline of the " 
neural tube and in the hindgut. Presomitic 
paraxial mesoderm did not express p21, but 
there was hybridization in the dermamyo- 
tome (Fig. lA), where the first determined 

myocytes are localized. By day 10 p.c., there 
was strong expression of p21 in the muscle 
fibers extending from the anterior to the 
posterior margin of the myotome (Fig. 1B). 
Hybridization of adjacent sections with a 
probe for the muscle-specific basic-loop-he- 
lix protein myogenin (9) exhibited signals in 
the same regions in which p21 was detected 
(Fig. 1, C and G). Muscle cells in the myo- 
tome are ~ost-mitotic (10). A transverse sec- . , 

tion throLgh a day-10 p.c. embryo at the 
position of the forelimb revealed expression 
of p21 in the developing limb (Fig. ID). In 
the section shown, there is a zone of hybrid- 
ization in the dorsal region of the limb mes- 
enchyme, representing the emerging dorsal 
muscle mass. Muscle ~rimordia in the limb 
expressed the homeodox gene Pax3 (I  I ) in 
the same region where p21 was expressed 

Fig. 1. Expression of p21, myogenin, and Pax3 during mouse embryogenesis. Sections are from C57 
black embryos and were subjected to in situ hybridization with the indicated 35S-labeled riboprobes (8). 
(A) Transverse section through an 8.5-day p.c. embryo: p21 probe. (6 and C) Adjacent transverse 
sections through a 10-day p.c. embryo: p21 probe (B), myogenin probe (C). (D and E) Adjacent 
transverse sections through the limb bud and the body wall of a 10-day p.c. embryo: p21 probe (D), Pax3 
probe (E). (F and G) Adjacent transverse section through a 10-day p.c. embryo: p21 probe (f), myogenin 
probe (G). (H and K) Cross-section through a 15.5-day p.c. forelimb: p21 probe. (K) Higher magnification 
of H. (I and J) Nearby transverse sections through the body wall and spinal cord of a 12.5-day p.c. 
embryo: p21 probe (I),  myogenin probe (J). (Land M) Adjacent coronal sections illustrating p21 expres- 
sion (L) in the nasal cavity and tongue muscles of a 12.5-day p.c. embryo, (M) was hybridized with a 
myogenin probe. (N) Coronal section through the nasal cavity of a 15.5-day p.c. embryo: p21 probe. 
Abbreviations: aer, apical ectodermal ridge; c, cartilage; dm, dermamyotome; gl, supporting cells; hf, hair 
follicle; lg, lung; ic, intercostal muscle; ns, nasal septum; nt, neural tube; re, respiratory epithelium; s, 
somite; se, olfactory sensory epithelium; sk, skin; and t, tongue. A, D, E, and K are the same magnifica- 
tion; scale bar in A is 50 Fm. B, C, H, I ,  J ,  and N are the same magnification; scale bar in B is 100 Fm. 
F, G, L, and M are the same magnification; scale bar in F is 100 km. Hybridization signal is in red. 
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(Fig. 1, D and E). Later in development, 
limb and intercostal muscle strongly ex- 
pressed p21 (Fig. 1, H through ]). 

At days 13 to 15 p.c. we detected expres- 
sion of p2 1 in nasal epithelium, tongue mus- 
cles, hair follicles, the outer most layer of em- 
bryonic epidermis, and cartilage (Fig. 1, H 
through M). With the exception of cartilage, 
which has been studied in less detail, each of 
these sites of expression contain post-mitot- 
ic, differentiated cells (10). This is also true 
of the apical ectodermal ridge (AER) where 
expression of p21 was observed as early as 
day 10 p.c. (Fig. IF). During limb outgrowth, 
the AER maintains the underlying mesen- 
chymal tissue in an undifferentiated state, 
but the cells of the AER itself do not divide. 
Selective expression of p21 in differentiated 
epithelium was evident in the nasal region. 
At day 15.5 p.c., p21 was expressed through- 
out the post-mitotic respiratory epithelium, 
whereas the adjacent olfactory epithelium 
had a delimited pattern of expression (Fig. 
IN). We detected no p21 mRNA in the mi- 
totic germinal layer of the olfactory epithe- 
lium, but p21 was expressed in the layer 
containing differentiating olfactory neurons 
(Fig. IN). 

The mRNA encoding p53 is widely ex- 
pressed in the day-12 p.c. embryo (Fig. 2A) 
(1 2), suggesting that normal amounts of p53 
are not sufficient for p21 induction in many 
cell types. To determine whether expression 
of p21 was dependent upon p53, we exam- 
ined expression of p21 in sections of mice 
lacking the gene encoding p53 [p53(-I-)] 
(13). Mice that lack p53 develop normally 
but incur tumors much more rapidly than do 
wild-type animals (13, 14). As judged by 
ISH, expression of p21 during early embryo- 
genesis was independent of expression of p53 
(Fig. 2A). Sagittal sections through day-1 1.5 
p.c. embryos lacking p53 stained strongly for 
p21 in somites (Fig. 2A). A survey of the 
major sites of p21 expression, including car- 
tilage, nasal epithelium, intercostal tongue, 
and limb muscle from day-12 to -14.5 p.c. 
embryos lacking p53 revealed that p21 ex- 
pression in these tissues was independent of 
p53 expression (Fig. 2A). 

We determined expression of p21 in adult 
mouse tissues (Fig. 2C). Because adult tissues 
are a primary target for tumorigenesis, it was 
conceivable that p21 expression in certain 
adult tissues is p53-dependent. Analysis of 
small intestine and stomach revealed that 
p21 is expressed in a highly selective manner 
and is found in large amounts only in the 
fully differentiated columnar epithelium 
(Fig. 2B). The p21 mRNA was absent from 
the embryonic brain and spinal cord, but 
large amounts of p21 mRNA were detected 
in the adult brain (Fig. 2C), especially in the 
olfactory bulbs (Fig. 2B). Uniform expres- 
sion of p21 was observed in adult lungs, 
heart, and skeletal muscle (Fig. 2B). In all of 
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Fig. 3. Induction of p21 mRNA dur- A 
ing myoblast differentiation in vitro. 
(A) Northern blot analysis of p21 
and myogenin mRNA in C2 myo- 
blasts deprived of serum for the in- 
dicated times in hours. Fold induc- 
tion represents mRNA levels nor- 
malized to GAPDH relative to time 
0. (B) 1 OT1/2 cells and 10T1/2 cells 
expressing MyoD (23) were grown 
in the presence of high or low con- 
centrations of serum for 4 days; to- 
tal RNA was isolated, and Northern 
blots were probed with p21, myo- 
genin, and GAPDH. 

the adult tissues analyzed, p21 expression 
was unaltered in p53(-I-) mice (Fig. 2B). 
Consistent with this, mRNA prepared from 
a typical tissue, the stomach, showed no 
p53-dependent changes in the amount of 
p21 mRNA (15). 

Our expression studies suggest that p21 
may function in muscle cell differentiation. 
The myogenic program is controlled by he- 
lix-loop-helix transcription factors of the 

1 026 

MyoD family and expression of either MyoD, 
Myf5, or myogenin is sufficient to convert a 
number of cell types into muscle (9, 16). 
Whereas Mvf5 and MvoD can functionallv 
replace each other in vivo (1 7), myogenin 
has a seDarate function and is reauired for 
the form'ation of differentiated muscle fibers 
(18). A critical steD in this differentiation . . 
process is cell cycle arrest, and overexpres- 
sion of MyoD in various cell types leads to a 
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block in DNA replication (20). The process 
of muscle cell differentiation can be mim- 
icked in vitro in C2 myoblasts, which form 
post-mitotic, multinucleated myotubes when 
grown in the absence of growth factors (1 9). 
Consistent with a role for p21 in the differ- 
entiation process, withdrawal of serum from 
C2 myoblasts results in induction of p21 
mRNA as detected by Northern analysis 
(Fig. 3) (21). After 72 hours, at which time 
-50% of the cells have been incorporated 
into myotubes, p21 mRNA levels had in- 
creased by 17-fold. The time course for myo- 
genin mRNA induction was similar to that 
of p21 mRNA. Furthermore, MyoD expres- 
sion in 10T1/2 cells in low serum was suffi- 
cient to induce both p21 (Fig. 3B) (22) and 
differentiation into myotubes (23). 

To examine whether p21 expression is 
dependent upon myogenin, ISH analysis was 
done with mice lacking the gene encoding 
myogenin [myogenin(-I-)]. These animals 
produce muscle precursor cells expressing 
MyoD and Myf5 but lack fully differentiated 
muscle fibers and die shortly after birth (1 8). 
Expression of p21 was retained in myoblasts 
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Fig. 4. Expression of p21 
in myogenin( - / - ) em
bryos and embryos lack
ing both MyoD and myo-
genin. A(a, b) Adjacent 
coronal sections, illus
trating nasal cavity, 
tongue muscle, and hair 
follicles of 15.5-day p.c. 
myogenin( - / - ) embryo 
sections, were probed 
with p21 (a) or MyoD (b) 
to identify muscle precur
sor cells, (c and d) Cross-
sections through the 
forelimb of a 15.5-day 
p.c. myogenin( - / - ) em
bryo probed with p21 (c) 
or MyoD (d). B(a, b) Sec
tions through the tongue 
(a) and forelimb (b) of a 
14-day p.c. M y o D ( - / - ) ; 
myogenin( - / - ) embryo 
probed with p21. Abbre
viations: c, cartilage; hf, 
hair follicle; Im, limb mus
cle; ns, nasal septum; re, 
respiratory epithelium; 
and t, tongue. Scale bar 
in A(a) is 100 yjm and ap
plies to all panels in Fig. 4. 

in the forelimb and tongue of myogenin-
(—/—) embryos and in other muscle tissue 
(Fig. 4A), indicating that myogenin is not 
required for p21 induction during myogen-
esis. Although there is a block to myoblast 
differentiation in myogenin( —/—) mice, 
BrdU (bromodeoxyuridine)-labeling experi
ments indicate that the undifferentiated 
myoblasts that populate the presumptive 
muscle-forming regions withdraw from the 
cell cycle normally (24). 

Although MyoD expression is sufficient 
to induce p21 (Fig. 3B) (22), p21 is ex
pressed in somites at day 8.5 p.c. (Fig. 1A) 
before expression of MyoD at day 10.5 p.c. 
(9), consistent with the possibility that other 
transcription factors may control p21 induc
tion during muscle cell differentiation in the 
embryo. One caveat is that at day 8.5, MyoD 
may be expressed in amounts sufficient to 
activate p21 but below the limit of detection 
by ISH. However, at day 14 p.c, p21 was 
expressed in muscle precursor cells from fore
limb and tongue in MyoD(— /—); myogenin-
(—/—) mice in amounts comparable to that 
found in wild-type animals (Fig. 4B). 

Our results revealed a strong correlation 
between arrest of cell proliferation and p21 
expression in vivo. This correlation was par
ticularly evident in the skeletal muscle lin
eage where p21 expression was similar to 
that of myogenin in vivo and in vitro. Al
though MyoD is sufficient to arrest the cell 
cycle and induce muscle differentiation, nei
ther MyoD nor myogenin is required for p21 
regulation in vivo, suggesting a possibly re
dundant role for Myf5. Other CKIs and neg

ative cell cycle regulators, such as the reti
noblastoma gene product Rb (28), may also 
contribute to differentiation of muscle and 
other cell lineages. Although the basal 
amount of p21 in fibroblast cell lines in vitro 
is p53-dependent (26), p21 expression in the 
embryo and adult does not require p53. Tak
en together, our results indicate that p21 
functions as an inducible growth inhibitor 
both during development and in G2 check
point control, and that p53's role in p21 
expression is likely to be limited to the 
checkpoint function. 
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