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Although the myogenic regulator MyoD is expressed in proliferating myoblasts, differ-
entiation of these cells is limited to the Go phase of the cell cycle. Forced expression of 
cyclin Dl ,  but not cyclins A, B, or E, inhibited the ability of MyoD to transactivate 
muscle-specific genes and correlated with phosphorylation of MyoD. Transfection of 
myoblastswith cyclin-dependent kinase(Cdk)inhibitorsp21and p16augmentedmuscle-
specific gene expression in cells maintainedin high concentrations of serum, suggesting 
that an active cyclin-Cdk complex suppresses MyoD function in proliferating cells. 

T h e  process of terminal skeletal muscle 
differentiation, regulated by the MyoD fam-
ily of basic helix-loop-helix (bHLH) tran-
scription factors (1), is intimately coupled 
to cell cycle arrest in Go (2). Although 
several models address the coupling of cell 
cycle arrest and differentiation (3), recent 
evidence directly links cell cycle regulatory 
proteins to the regulation of skeletal muscle 
differentiation (4, 5). Terminal cell cycle 
withdrawal of differentiated myotubes and 
MyoD transactivation function in SAOS2 
osteosarcoma cells requires the function of 
the retinoblastoma gene product (Rb) (5), 
whose activity is controlled by a family of 
regulatory proteins, GI-cyclins, and their 
catalytic partners, Cdks (6-10). In addi-
tion, the functional activity of MyoD seems 
to be inhibited by constitutive expression of 
cyclin Dl (11). Here we address the mech-
anism of cyclin-mediated inhibition of 
MyoD function and explore whether endo-
genous Cdk activity inhibits myogenic dif-
ferentiation in proliferating cells. 

10T1/2 fibroblastswere transfected with a 
plasmid encoding MyoD under the control 
of the cytomegalovirus (CMV) promoter 
(CMV-MyoD), a reporter plasmid consisting 
of the muscle creatine kinase promoter-en-
hancer driving the chloramphenicol acetyl-
transferase (CAT) gene (MCK-CAT), and 
plasmids containing the CMV promoter 
driving expression of different cyclins. Ex-
pression of cyclin Dl inhibited transactiva-
tion of MCK-CAT, whereas expression of 
other G I  and mitotic cyclins had less or no 
effect (Fig. 1A). Cyclins A and E, which can 
phosphorylate and inactivate Rb (6), only 
weakly inhibited MyoD-mediated MCK-
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CAT transactivation, suggesting that Rb in-
activation may not be sufficient to inhibit 
MyoD function in this assay. Accordingly, a 
mutant form of cyclin Dl (cyclin Dl-gh) 
that reverses Rb-induced cell cycle arrest 
more effectively than wild-type cyclin Dl 
(8) was slightly less effective at inhibiting 
MyoD function than wild-type cyclin Dl 
(11, 12). Although it is possible that cyclin 
Dl specifically inactivates other Rb-related 
proteins, our findings indicate that the rela-
tive abilities of various G I  cyclins to inhibit 
MyoD function do not correlate with the 
ability of such cyclins to inhibit Rb activity. 
Transcriptional activation of a reiterated 
MyoD binding site (MEF1 site) upstream of 
the thymidine kinase (tk) promoter (4Rtk-
CAT) was similarly inhibited by expression 
of ectopic cyclin Dl (Fig. lA),  suggesting 
that the target of this cyclin is the MyoD-E 
protein heterodimer. In contrast to transac-
tivation of muscle-specific reporters, which 
was inhibited by ectopic cyclin Dl to 10% of 
that in control cells, transactivation of a 
nonmuscle-specific reporter (CMV-CAT) 
was reduced to only 60% of that in control 
cells (Fig. 2A). 

Although cyclin Dl expression did not 
alter the amount of MyoD protein in trans-
fected cells, the electrophoretic mobility of 
MyoD was affected (Fig. 1B). When isolat-
ed from differentiated myotubes or trans-
fected 10T1/2 cells, MyoD migrated in 
SDS-polyacrylamide gels as a doublet con-
taining equivalent amounts of fast and 
slowly migrating forms (Fig. 1B) (13). Be-
cause the slowly migrating form was re-
solved into a single, fast migrating species 
upon treatment with calf intestinal phos-
phatase (CIP), this slowed mobility is ap-
parently due to phosphorylation (Fig. 1B) 
(13). MvoD isolated from cells transfected 
with cvclin Dl consisted ~rimarilvof the 
slowly migrating, hyperphosphorylated spe-
cies (Fig. 1B). Ectopic expression of either 
cyclin A or E, which did not markedly 
affect transcriptional activation by MyoD 
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Fig. 1. lnhibitionof muscle-specificgene expres-
sion by ectopic cyclin Dl  correlates with phos-
phorylation of MyoD protein. (A) 10T1/2 fibro-
blasts were transfected (20) with equal amounts 
of CMV-MyoDand either MCK-CAT (lanes 1 to 6) 
or 4Rtk-CAT (lanes 7 and 8) and a CMV expres-
sion vehicle either without an insert (lanes1and 7) 
or with a cyclin gene (CMV-cyclin)(20) (lanes 2 to 
6 and lane 8). Open and closed bars represent 
duplicateplatesfrom a representativeexperiment. 
(B)10T1/2 cells were transfected with equal 
amounts of CMV-MyoD and the indicated CMV-
cyclin construct and cultured as described (20). 
After 84 hours, MyoDwas isolatedby immunopre-
cipitation and either directly resuspendedin SDS 
loading buffer (lanes 1 to 4) or treated with CIP 
beforeresuspension(lanes5 and 6) (21).The CIP-
dependent alterationin MyoDelectrophoreticmo-
bility was not observed in the presence of phos-
phatase inhibitors (12). After SDS-PAGE, MyoD 
was detected by protein immunoblot(21). Molec-
ular size (in kilodaltons)is indicated on the right. 

(Fig. lA),  did not alter the phosphorylation 
state of MyoD (Fig. 1B). Thus, the ability of 
cyclin Dl to inhibit MyoD-mediated trans-
activation of muscle genes correlates with 
phosphorylation of MyoD protein. 

In transient transfection assays, expres-
sion of both cyclins Dl and D2 inhibited 
MyoD-mediated activation of MCK-CAT 
(Fig. 2A); the degree of inhibition was pro-
portional to the expression of each construct 
(Fig. 2B). In contrast, expression of cyclin 
D3, which was similar to that of cyclin D2, 
did not specifically inhibit muscle gene ex-
pression (Fig. 2, A and B). In proliferating 
C2C12 myoblasts, cyclin Dl levels are high 
and decrease upon differentiation (Fig. 2C). 
In contrast, cyclin D3 levels are low in pro-
liferating myoblasts and are induced during 
muscle differentiation (Fig. 2C). Cyclin D2 
RNA was barely detectable in myoblasts or 
myotubes (12, 14). The catalytic partner for 
cyclin Dl,  Cdk4 (10, 15), is expressed in 
both myoblasts and myotubes (Fig. 2C). 
Thus, cyclin Dl is the only D-type cyclin 
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Fig. 2. (A) Differential inhibition of MyoD function by D- 
type cyclins. 10T1/2 cells were transfected (20) with 
equal amounts of CMV-MyoD, and either a muscle-spe- 
cific reporter (MCK-CAT) (lanes 1 to 4) or a nonrnuscle- 

specific reporter (CMV-CAT) (lanes 5 to 8), plus a CMV expression vehicle without an insert (lanes 1 and 
5) or the indtcated CMV-cyclin (20) (lanes 2 to 4 and lanes 6 to 8). (B) Expression of ectopic D-type cyclins. 
10T1/2 cells were transfected with equal amounts of CMV-MyoD (lanes 1 to 4) and with a CMV 
expression vehicle either without an insert (lane 1) or encoding a D-type cyclin that was tagged with the 
hernagglutinin epitope (lanes 2 to 4). After 84 hours, cells were incubated wlth "SS-methionine and cyclins 
were isolated bv irnrnuno~recioitation and SDS-PAGE 127). Molecular size (in kilodaltons) IS indicated on , , 
the right. (C) differential expression of endogenous cicl/ns D l  and D3 during muscle differentiation. 
Proteins from whole-cell extracts of proliferating rnurine C2C12 myoblasts (MB) or differentiated rnyo- 
tubes (MT) were resolved by SDS-PAGE. Cyclins Dl and D3 and Cdk4 were detected by protetn 
imrnunoblot (22). 
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C2C12 cells (30% confluent in 60-mm dishes) were transfected with 0.5 pg of MCK-CAT and 1.5 pg of 
a plasmid in which a CMV promoter drives expression of p21 or p16, or 0.75 pg of each plasmid (20). 
CMV expression vehicles without an insert were included to normalize DNA in all transfections. After 12 
hours, cells were trypsinized; one-half of these cells were plated onto 100-mm dishes and refed with GM 
every 12 hours. To monitor gene expression under differentiation conditions, we cultured vehicle- 
transfected cells in DM (lane 2). After 72 hours (at which time cells were approaching confluence), cells 
were collected for CAT assay (20). CAT activity is expressed as fold increase over vehicle-transfected 
cells cultured in GM (lane 1). 

that is highly expressed in proliferating myo- 
blasts and inhibits MyoD function in tran- 
sient assays. 

Cyclin Dl can interact with and poten- 
tiate Cdk4 or Cdk6 activity (10, 15, 16). To 
determine whether Cdk activity is required 
for cyclin Dl-mediated repression of MyoD, 
we examined the effect of coexpressing p21 
(CIP1, WAF1, sdi, CAP20, Picl), a potent 
inhibitor of several Cdks (1 7). Cotransfec- 
tion of 10T1/2 cells with p21 and cyclin Dl 
reversed cyclin Dl-mediated inhibition of 
MyoD function and led to superactivation of 
the MCK-CAT reporter (Fig. 3A). Expres- 
sion of ectopic p21 did not alter the amount 
of ectopic cyclin Dl (12) and did not acti- 
vate the MCK-CAT reporter in the absence 
of MyoD (Fig. 3A). The reversal of cyclin 

Dl-mediated repression of MyoD by ectopic 
p21 indicates that cyclin Dl inhibits MyoD 
function by activating a Cdk. 

To determine whether endogenous cy- 
clin-Cdk complexes similarly inhibit MyoD 
function in proliferating myoblasts, we trans- 
fected C2C12 myoblasts with MCK-CAT 
and p21 or the Cdk4 inhibitor p16 (18) and 
then split the cells into either growth medi- 
um (GM) or differentiation medium (DM). 
Cells were harvested for CAT activity 60 
hours after replating, when cells in GM had 
just become confluent. Under these condi- 
tions, culture in DM activated MCK-CAT 
expression to levels three to four times that 
in cells incubated in GM (Fig. 3B). Ectopic 
expression of either p2 1, which induced cell 
cycle withdrawal of these cells (1 2), or p16 

partially reversed the inhibitory effect of GM 
on MCK-CAT expression in mitogen-stim- 
ulated myoblasts (Fig. 3B). Coexpression of 
both p21 and p16 resulted in MCK-CAT 
expression equal to that achieved in serum- 
starved cells (Fig. 3B). When expression of 
endogenous muscle gene (myosin heavy 
chain, MHC) was monitored by immunoflu- 
orescence, we consistently observed a two- 
to threefold increase in MHC expression in 
mitogen-stimulated muscle cells trans- 
fected with a CMV-P-Gal reporter plus 
the combination of p16 and p21 versus 
similarly cultured cells transfected with 
the CMV-P-Gal reporter plus empty ex- 
pression vehicles (1 2).  

The above findings indicate that ectopic 
p21 and p16 expression augments the ex- 
pression of muscle-specific genes in conflu- 
ent cultures of mitogen-stimulated myo- 
blasts. However, when myoblasts, trans- 
fected and cultured as described above, were 
harvested at earlier time points (and were 
thus less confluent), there was less differen- 
tial effect of GM versus DM and no consis- 
tent enhancement of MCK-CAT expression 
by forced expression of p21 or p16 (or both) 
(12). These findings suggest that other fac- 
tors in addition to Cdks negatively regulate 
the activity of MyoD in subconfluent myo- 
blasts (3). However, in confluent myoblasts 
maintained in high-mitogen media, the 
forced expression of a Cdk inhibitor reverses 
this serum-dependent effect and augments 
expression of both exogenous and endoge- 
nous muscle genes. 

Our results demonstrate that cyclin Dl 
inhibits MyoD function by a Cdk-dependent 
mechanism and that Cdk activity prevents 
muscle differentiation in mitogen-stimulated 
myoblasts. Cyclin Dl is a good candidate as 
a physiologic regulator of MyoD function 
because its Cdk-associated activity is present 
throughout the cell cycle (15) and cyclin Dl 
RNA and protein levels decline in mature 
skeletal myotubes (Fig. 2C) (14). This role 
for cyclin Dl is supported by the observation 
that p16, a specific inhibitor of cyclin D-de- 
pendent kinases (18), augments expression 
of MCK-CAT in mitogen-stimulated myo- 
blasts (Fig. 3B). Although cyclins Dl,  A, 
and E similarly cause phosphorylation of Rb 
and overcome Rb-induced cell cycle arrest 
(6, 9), only the expression of cyclin Dl 
resulted in phosphorylation of MyoD and 
inhibition of MyoD function, suggesting that 
cyclin Dl-Cdk activity inhibits MyoD func- 
tion by a mechanism other than Rb phos- 
phorylation. These data suggest that a nodal 
point in the coordination of cell cycle with- 
drawal and muscle differentiation may be the 
down-regulation of cyclin Dl-associated 
Cdk activity and are consistent with our 
recent observation that the Cdk inhibitor 
p21 is induced during skeletal muscle differ- 
entiation (1 9). 
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1 roper development of a multicellular or­
ganism is complex and requires precise spa­
tial and temporal control of cell prolifera­
tion. A large network of regulatory genes has 
evolved to specify when and where in the 
embryo cells divide. This control is superim­
posed upon the basic cell cycle regulatory 
machinery. 

Cell proliferation requires the action of 
cyclins, which serve as activators of their 
cognate cyclin-dependent kinases (Cdks). 
(I) D- and E-type cyclins have been impli­
cated in controling passage through the "re-
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strict ion" point (2), after which cells become 
committed to a round of cell division (3).GX 

cyclin accumulation is required for cell cycle 
entry and members of this family, particular­
ly D-cyclins, have been identified as targets 
of growth factors (I). 

Equally important in the execution of 
developmental programs is the arrest of 
growth once the program is complete. 
Whereas the control of terminal differentia­
tion may be mediated by multiple, possibly 
redundant, mechanisms, cell cycle arrest 
through inactivation of Cdks is likely to be a 
central feature. Possible mediators of such 
negative control are two classes of Cdk in­
hibitory (CKI) proteins typified by p21C I P 1 

(4) and p16 INK4/MTS1 (5). The p21 protein 
inhibits Gl cyclin complexes containing 
Cdk2, Cdk3, Cdk4, and Cdk6 and is tran­
scriptionally induced by overexpression of 
the tumor suppressor protein p53 (6) or by 
activation of p53 after DNA damage, con­
sistent with a role for p21 in the p53-depen­
dent Gl checkpoint (7). 

The ability of p21 to function as an in­
ducible cell cycle inhibitor suggests that it 

p53-lndependent Expression of p21Clp1 in 
Muscle and Other Terminally Differentiating Cells 
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Terminal differentiation is coupled to withdrawal from the cell cycle. The cyclin-dependent 
kinase inhibitor (CKI) p21Cip1 is transcriptionally regulated by p53 and can induce growth 
arrest. CKIs are therefore potential mediators of developmental control of cell proliferation. 
The expression pattern of mouse p21 correlated with terminal differentiation of multiple cell 
lineages including skeletal muscle, cartilage, skin, and nasal epithelium in a p53-indepen-
dent manner. Although the muscle-specific transcription factor MyoD is sufficient to activate 
p21 expression in 10T1/2 cells, p21 was expressed in myogenic cells of mice lacking the 
genes encoding MyoD and myogenin, demonstrating that p21 expression does not require 
these transcription factors. The p21 protein may function during development as an in­
ducible growth inhibitor that contributes to cell cycle exit and differentiation. 
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