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Suppression of ICE and Apoptosis in Mammary 
Epithelial Cells by Extracellular Matrix 

Nancy Boudreau," Carolyn J. Sympson, Zena Werb, 
Mina J. Bissell 

Apoptosis (programmed cell death) plays a major role in development and tissue regen- 
eration. Basement membrane extracellular matrix (ECM), but not fibronectin or collagen, 
was shown to suppress apoptosis of mammary epithelial cells in tissue culture and in vivo. 
Apoptosis was induced by antibodies to P, integrins or by overexpression of stromelysin- 
1, which degrades ECM. Expression of interleukin-1 p converting enzyme (ICE) correlated 
with the loss of ECM, and inhibitors of ICE activity prevented apoptosis. These results 
suggest that ECM regulates apoptosis in mammary epithelial cells through an integrin- 
dependent negative regulation of ICE expression. 

Growth ,  differentiation, and apoptosis are 
alternative cellular pathways that are each 
crucial to  normal development and the es- 
tablishment of tissue-specific function. Like 
growth and differentiation, apoptosis re- 
quires active and coordinated regulation of 
specific genes. In mammalian cells, these 
genes include BCL-2, a homolog of the Cae- 
norhabditis elegans ced-9 gene, which is a 
potent suppressor of death ( 1  ), and ICE, a 
homolog of the ced-3 gene, which can ac- 
tively kill cells (2). The products of the 
BCL-2 and ICE genes also appear to func- 
tion like their C. elegans counterparts (1-3). 

The  nature of the ECM can influence 
the apoptotic program in mammalian 

cells. Establishment of mammary gland al- 
veolar morphology and expression of milk- 
specific genes are absolutely dependent on  
deposition of a laminin-rich ECM (4). In 
addition, involution of the gland, which 
follows expression of the lactational phe- 
notype, is characterized by degradation of 
this ECM by metalloproteinases (5) and is 
accompanied by apoptosis (6 ,  7). Cell at- 
tachment, mediated by integrin-ECM in- 
teractions, can suppress apoptosis in  short- 
term two-dimensional cultures for up to 30 
hours (8). 

T o  determine whether ECM regulates 
apoptosis, we compared the response of 
CID-9 mammary epithelial cells (MECs) 
plated directly on  tissue culture plastic, in 
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unlikeplastic, fibronectin, or type I colla- 
gen, this Englebreth-Holm-Swarm (EHS) 
matrix directs the cells to  differentiate, as 
manifested by the formation of three-di- 
mensional alveolar structures and expres- 
sion of milk proteins (9). After 4 to  5 days 

941 43, USA. on  plastic, despite strong adhesion and 
*To whom correspondence should be addressed. spreading, the cells began to display char- 
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acteristics of apoptosis including nucleoso- 
ma1 DNA laddering (Fig. lA) ,  expression of 
the apoptosis-associated gene SGP-2 (7) 
(Fig. lB), and nuclear condensation (Fig. 
1C). In situ analysis revealed that fragment- 
ed DNA was present in 10 to 20% of cells 
(Fig. ID). In contrast, the cells plated on 
ECM did not display these apoptotic fea- 
tures for up to 10 days (Fig. 1, A, B, and E). 
Similar results were observed when the 
ECM was pretreated with ammonium sul- 
fate to remove growth factors (1 0). To elim- 
inate the possibility that suppression of ap- 
optosis was due to residual growth factors in 
the EHS matrix, we plated MECs on porous 

Fig. 1. Characteristics of 
apoptosis in CID-9 cells. (A) 
Electrophoretic analysis of 
total DNA (20 pg) from cells 
cultured for 7 days on plastic 
(P) or EHS basement mem- 
brane (E). (B) RNA blot hy- 
bridized with a probe that 
detects the 2.4-kb mRNA 
for the apoptosis-associat- 
ed gene SGP-2. (C) Acridine 
orange staining of cultured 
cells on plastic (arrow points 
to apoptotic cells). Scale 
bar, 58 pm. In situ analysis 
of DNA fragmentation in in- 
dividual cells cultured on 
plastic (D) or EHS basement 
membrane (E) detected by 
fluorescein isothiocyanate- 
digoxigenin nucleotide la- 
beling of 3'-OH DNA ends 
(Apoptag, Oncor). Scale 
bar, 90 Fm. Electrophoretic 
analysis of total DNA (20 pg) 
from CID-9 cells (F) cultured 
on EHS (E) or allowed to 
form endogenous basement 
membrane (BM) for 5 days, 
(G) treated with normal rabbit 
type I collagen (200 pg/ml) (C 

filters (I I ), whereupon the cells deposited 
their own basement membrane. This endog- 
enous basement membrane also suppressed 
apoptosis in long-term cultures (Fig. IF). 

To demonstrate that ECM-derived sig- 
nals suppress apoptosis, we disrupted cell- 
ECM interactions by addition of an anti- 
body to P, integrin (12). Two days after 
addition of this antibody, a substantial in- 
crease in nucleosomal DNA laddering was 
observed, even in cells still adherent to 
their endogenous matrices (Fig. 1G). MECs 
that were attached to culture dishes coated 
with either fibronectin or type I collagen 
displayed a degree of apoptosis similar to 

serum (control) or anti-p, integrin for 2 days, or (H) cultured on plastic (P), 
:ol), or fibronectin (50 kg/ml) (FN) for 5 days. 

Fig. 2. Apoptosis in cells overexpressing stromelysin-1 . (A) Electrophoretic analysis of total DNA (20 pg) 
from control (C) and IPTG-induced cells (I) after 72 hours. Corresponding RNA blot (20 pg per lane) 
hybridization with a probe that detects a 1.9-kb stromelysin-1 mRNA. In situ analysis of DNA from 
mammary gland of normal mice in midpregnancy (B) and in transgenics expressing stromelysin-1 (14) (C). 
Note the increase in the number of epithelial cells undergoing apoptosis and the collapsed alveoli in the 
transgenics compared to normal mice. Scale bar, 33 pm. 

MECs cultured on plastic (Fig. lH),  indi- 
cating that suppression of apoptosis re- 
quired an intact basement membrane ECM. 

To  determine whether proteolytic de- 
struction of an existing basement mem- 
brane could induce apoptosis, we estab- 
lished a culture model of mammary gland 
involution. CID-9 cells were cotransfected 
with an inducible expression vector encod- 
ing a stromelysin-1 autoactivating mutant 
under control of the Rous sarcoma virus 
(RSV) promoter linked to a lac repressor- 
binding intron and with a vector encoding 
the lac repressor-binding protein (13). 
MECs were cultured on filters for 3 days, 
and stromelysin-1 expression was induced 
by addition of 5 mM isopropyl-P-D-thioga- 
lactopyranoside (IPTG). Within 72 hours, 
the& was a substantial increase in apopto- 
sis-associated DNA laddering in the cells 
expressing stromelysin-1 but not in the un- 
induced controls (Fig. 2A). Apoptosis de- 
pended on proteolytic activity of the 
stromelysin-1 because it was inhibited by 
the addition of the metalloproteinase inhib- 
itor GM6001 (14). 

We then examined apoptosis in vivo in 
transgenic mice expressing the stromely- 
sin-1 gene under control of the whev acidic " 
milk protein promoter (1 5), which is acti- 
vated in mid- to late pregnancy. DNA anal- 

~ntrol 

cnnA 

BACMK 

Fig. 3. Inhibition of apoptosis in CID-9 cells. (A) 
Electrophoretic analysis of DNA (20 pg) from 
CID-9 untransfected control cells (P) or cells trans- 
fected with crmA and cultured on plastic for 7 
days. (B) Quantitation of fragmented DNA from 
untransfected CID-9 cells (control), cells trans- 
fected with cmA, or cells treated with 0.5,3.5, or 
5.0 pM BACMK. 
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ysis revealed that unlike the MECs in nor- 
mal animals (Fig. 2B), at least 10 to 15% of 
MECs in the transgenics were apoptotic in 
midpregnancy (Fig. 2C). Thus, degradation 
of ECM by stromelysin-1 results in apopto- 
sis both in culture and in vivo. 

To  determine whether apoptosis of 
MECs was mediated by ICE, a known in- 
ducer of apoptosis in mammalian cells, we 
transfected CID-9 cells with a vector en- 
coding d, a viral gene product that spe- 
cifically inhibits the enzymatic activity of 
ICE (16). The d transfectants showed 
an 80% reduction in apoptosis-associated 
DNA laddering compared to control cells 
(Fig. 3, A and B). We also treated cells 
plated on plastic with BACMK, an inhibi- 
tor directed at the active site of ICE (17). 
BACMK reduced DNA laddering in CID-9 
cells by up to 80% after 5 days as compared 
to uninhibited controls (Fig. 3B). These 
results indicate that in the absence of ECM, 
apoptosis of MECs occurs largely through 
the activity of ICE. 

We also investigated the expression of 
ICE in the mammary gland in vivo. The 
1.6-kb ICE mRNA (18) was not expressed 
in the lactating gland but was induced dur- 
ing involution (Fig. 4A), when apoptosis 
occurs in this tissue (7). To determine 
whether the regulation of ICE expression 
was directly related to the presence of ECM, 
we examined ICE mRNA expression in 
CID-9 cells. CID-9 cells cultured on plastic 
contained large amounts of ICE mRNA 
and the 45-kD ICE precursor protein and 
enzymatically active 20-kD subunit (19), 
whereas those plated on ECM contained 
little or no ICE mRNA or protein (Fig. 4, B 
and C). 

We conclude that three-dimensional 
ECM, acting through integrin receptors, 
not only directs committed MECs to es- 

Fig. 4. ICE mRNA and protein expression in mam- 
mary epithelium. (A) RNA blot (20 pg per lane) 
hybridized with a probe that detects a 1.6-kb ICE 
mRNA in mammary tissue from normal mice lac- 
tating for 9 days (L) or after involution for 2,4, and 
8 days (21, 41, 81). (B) RNA blot for ICE mRNA in 
CID-9 cells after 5 days of culture on ECM (E) or 
tissue culture plastic (P). (C) lmmunoblot analysis 
of ICE protein in lysates from corresponding cells 
with a polyclonal antibody that detects the 45-kD 
precursor, the active 20-kD subunit, and process- 
ing intermediates (19). 

tablish and maintain the differentiated 
state but also suppresses the expression of 
ICE and prevents apoptosis. Consequent- 
ly, the proteolytic degradation of ECM 
such as occurs during mammary gland in- 
volution leads to the loss of the differen- 
tiated state, induction of ICE expression 
and activity, and ultimately apoptotic cell 
death both in vivo and in culture. Al- 
though our data cannot distinguish be- 
tween ICE and as yet unidentified ICE 
gene family members that might also be 
blocked bv active site-directed inhibitors 
or recognized by antibodies to ICE, we 
show that survival requires not only adhe- 
sion, but also specialized P, integrin-me- 
diated signals derived from specific ECM 
components. The nature of these signals 
and their ability to modulate the expres- 
sion of ICE remain to be elucidated, as do 
the in vivo substrates for ICE or related 
enzymes and the mechanism or mecha- 
nisms by which they influence cell death. 
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