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Galaxies, Human Eyes, and 
Artificial Neural Networks 

0. Lahav, A. Naim, R. J. Buta, H. G. Corwin, G. de Vaucouleurs, 
A. Dressler, J. P. Huchra, S. van den Bergh, S. Raychaudhury, 

L. Sodre Jr., M. C. Storrie-Lombardi 

The quantitative morphological classification of galaxies is important for understanding the 
origin of type frequency and correlations with environment. However, galaxy morphological 
classification is still mainly done visually by dedicated individuals, in the spirit of Hubble's 
original scheme and its modifications. The rapid increase in data on galaxy images at low 
and high redshift calls for a re-examination of the classification schemes and for automatic 
methods. Here are shown results from a systematic comparison of the dispersion among 
human experts classifying a uniformly selected sample of more than 800 digitized galaxy 
images. These galaxy images were then classified by six of the authors independently. The 
human classifications are compared with each other and with an automatic classification 
by an artificial neural network, which replicates the classification by a human expert to the 
same degree of agreement as that between two human experts. 

Hubb le  ( I )  suggested a classification (E), through lenticular galaxies (SO), to 
scheme for galaxies that consists of one spiral galaxies (S) and a parallel branch of 
seauence startine from elli~tical ealaxies s~irals  with a barred comDonent, which 

0 0 

0. Lahav, A. Naim, M. C. Storrie-Lombardi, nstltute of 
Gelds the so-called "tuning fork" ' Hubble 
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UK. astronomers over the years (L-5)  to incor- 
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L. Sodre Jr., nstituto AstronBmico e Geofisco da Univer- the physical processes galaxy 
sidade de SBo Paulo, CP9638,01065, Sao Paulo, Brazil, formation. Although there have been in 

recent years significant advances in obser- 
vational techniques (for example, in the 
telescopes, detectors, and reduction algo- 
rithms) and in theoretical modelling (for 
example, N-body and hydrodynamics simu- 
lations), galaxy classification remains a sub- 
jective area. 

Quantifying galaxy morphology is im- 
portant for various reasons. First, it provides 
important clues to the origin of galaxies and 
their formation Drocesses. For exam~le ,  el- . , 

liptical and lenticular galaxies make up only 
-20% of the ealaxies, and there is a strikine " " 

density-morphology relation (1,  7) ,  indicat- 
ing that elliptical galaxies mainly reside in 
high-density regions. Understanding the or- 
igin of the type frequency and the density- 
morphology relation is of fundamental im- 
portance. However, quantification of these 
properties requires reliable classification 
schemes. Second, galaxies can also be used 
to, for example, measure redshift-indepen- 
dent distances by methods such as the lu- 
minositv-rotation velocitv relation for s ~ i -  
rals (8)' and the diametei-velocity dispk- 
sion relation for ellipticals (9). Any obser- 
vational program requires an  a priori list of 
target objects for photometric or spectro- 
graphic measurements. Therefore, galaxy 
classification is important for the practical 
goal of producing large catalogs for statisti- 
cal and observational programs and for es- 
tablishing some underlying physics (in anal- 
ogy with the Hertzsprung-Russell diagram 
for stars). Moreover. understandine the 
morphology of galaxies at low redscift is 
crucial for anv meaningful com~arison with " 

galaxy images obtained with the Hubble 
Space Telescope at higher redshift ( e  .=: 

0.4). Most of our current knowledge of gal- 
axy morphology is based on the pioneering 
work of several dedicated observers, who 
have classified and cataloged thousands of 
galaxies (2,  10, 11 ). However, facilities 
such as the Cambridge Automated Plate 
Measuring (APM) machine and the Sloan 
digital sky survey yield millions of galaxies. 
Classifying very large data sets is obviously 
beyond the capability of a single person. 
Therefore, the galaxy classification problem 
calls for new approaches (1 2-1 6). 

As a first step toward finding an  auto- 
mated method of galaxy classification, we 
compiled a well-defined sample of galaxy 
images. The galaxies were chosen from the 
APM Equatorial Catalogue of galaxies (1 7). 
This sample was compiled from IIIaJ (broad 
blue-green band) plates taken with the 
United Kinedom's Schmidt te lesco~e at 

cz 

Siding Spring, Australia; the sample covers 
most of the sky between declinations 
-17.5" and 2.5" at galactic latitudes b 2 
20". We chose a subsam~le of ealaxies with " 

major diameter (at an  isophotal level of 
24.5 magnitudes per square arc sec) D 2 1.2 
arc min on 75 plates, after eliminating gal- 
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axies that had severe contamination from 
overlapping stellar or galaxy images 
(<lo%). This sample of 831 galaxies was 
scanned by the APM in raster mode at a 
resolution of 1 arc sec (although the actual 
resolution of the Schmidt plates was more 
like 2 arc sec because of observing condi- 
tions). The digitized images (most of them 
measuring 256 pixels by 256 pixels) were 
printed at full resolution. 

The same galaxy images were then clas- 
sified by six of the authors (RB, HC, GV, 
AD, JH, and vdB) according to the Revised 
Hubble T-type (numerical stage) system 
(10, 18) or were converted to it. Although 
the T-type is only a one-dimensional pa- 
rameter (extending from T = -6 to + l l )  
in a three-dimensional scheme (10). it is . ,, 

commonly used and is convenient for com- 
puter algorithms compared with other, 
more descriptive schemes. While five of the 
authors classified the images on laser-print- 
ed hard copies, vdB examined them on a 
computer screen. His classification was 
done according to the DDO system (5), 

which was then converted to the T-type 
(1 0). The motivation for performing a com- 
parison between different experts is twofold: 
(i) to study systematically the degree of 
agreement and reproducibility between ob- 
servers and (ii) to use the human classifica- . . 
tions as training sets for artificial neural 
networks and other automatic classifiers. 

Figure 1 shows the digitized images of 
four galaxies in our sample. We also give the 
classification assigned to these galaxies by 
the RC3 catalog (10) (ignoring the quoted 
uncertainty in their T-type) and by the six 
authors, who independently classified the 
galaxies. One of these galaxies got exactly 
the same classification by all six observers, 
but there was no such clear agreement on 
the other three galaxies. Statistically, all six 
authors agreed on the exact T-type for only 
8 out of the 831 galaxies (less than 1%). 
Agreement between pairs of observers in 
excess of 80% is obtained only to within two 
types. Both GV and vdB, who have classi- 
fied galaxies for many more years than the 
others, were rather conservative and did not 

'J 1 
Fig. 1. Four APM galaxy images and their classification by six of the authors and RC3. The T-type 
classification of NGC2811 by RC3, RB, HC, GV, AD, JH, and vdB is 1,1, 1,1,1,1, and 1, respectively; 
of NGC3200,4.5,5,5,4,5,4, and 3; of NGC4902,3,3,4,3,3,5, and 3; and of NGC3962, -5, -3,0, 
-5, -3, -1, and -5. 

classify about a third of the galaxy images 
because they are saturated or of low quality. 
The other observers were more liberal and 
classified almost all of the galaxies (Table 
1). On the whole, there is indeed a reason- 
able consistency in the way people classify 
galaxies, but the scatter is significant. 

To better quantify the degree of agree- 
ment between observers, we calculated for 
each pair of observers a and b the variance 

1 
(,2 - - 2 (To - TbI2 
ab - Nab gal 

(1) 

taking into account only those Nab galax- 
ies for which both observers gave a 
classification. 

The root-mean-square (rms) dispersion 
(Table 2) between RC3 and any of the ob- 
servers (2.2 T-units on average) is larger 
than between any two observers who looked 
at the same APM images (1.8 T-units on 
average). We note that the subset of 600 
RC3 galaxies in the sam~le has a median - 
diameter of 1.7 arc min, compared with the 
median 1.5 arc min of the entire sample of 
831 galaxies, and the images were on differ- 
ent plate materials. This illustrates the fact 
that any classification depends on the color, 
size, and quality of the images used; that is to 
sav. there is no universal classification. , , 

Observers who belong to the same 
"school" agree better with each other than 
with others. For example, the dispersion 
between GV and H C  is only 1.5, and that 
between H C  and RB only 1.3 units. This 
indicates that systematic training can re- 

Table 1. The rms dispersion in T-type classifica- 
tion between the ANN and human experts. The 
ANN was trained and tested on individual observ- 
ers and their mean classification. The third column 
gives the total number of galaxies classified by 
each expert. 

Expert Dispersion 
versus ANN 

-- 

RB 1.9 764 
HC 2.0 81 2 
GV 2.2 473 
AD 1.9 81 4 
JH 2.3 824 
vdB 2.2 549 
Mean 1.8 83 1 

Table 2. The rms dispersion in T-type classifica- 
tion between pairs of 0bse~ers. 
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duce the scatter between tcvo hurnan ex- 
nerts. We also notice a weak trend for hetter 
agreement in the classification of large gal- 
axies (the rms dispersion between experts 
drops by about 10% from 1.2- to 2-arc min 
galaxies), hut there is no ohvious trend as a 
function of eccentricity. Detailed allalvsis of 
this cornparisoll will a&ear elsewhereJ(l 9). 
We also intend to evaluate the illterl~al 
scatter ua (the reproducibility) of each ob- 
server when classifvin~ the same data set 
again or a set with' lower resolution. As a 
crude estimate, if we assurne that ui, = a: 
+ a:, eve find for the different ohservers 
that a, is between 1.0 and 1.5. It is worth 
ernphasizillg that the plate material used 
here suffers from problems of saturation, 
and the digitization of the images (although 
at pixel size of 1 arc sec) may have degraded 
the agreement between observers. Never- 
theless, the plate material we have used is 
typical in many extragalactic studies. 

Having established the degree of agree- 
ment between human experts, the challellge 
is to design a computer algorithm that will 
revroduce classification to the same degree 
that a student or colleague of the human 
exDert can. Such an automated nrocedure 
usually involves two steps: (i) the extraction 
of features from the digitized image, such as 
the galaxy profile, the extent of spiral arms, 
the color of the galaxy, or an efficient corn- 
pression of the image pixels into a srnaller 
number of coefficiellts (for example, Fourier 
or principal cornpollent analysis); and (ii) a 
classificatioll procedure in which a computer 
learns from a training set for which a hiunan 
expert provided his or her classification. 

Artificial neural networks (ANNs).  
originally suggested as simplified rnodels of 
the human brain, are computer algorithms 
that provide a convenient general-purpose 
framework for classificatioll (20), including 
astronomical applicatiolls (21, 22). One 
cornmollly used ANN collfiguratioll con- 
sists of nodes arranged in a series of layers 
and utilizes the backpropagation minirniza- 
tion algorithm (23). In Fig. 2 we show a 
configuration in which the galaxy parame- 

Fig. 2. A schematc dagram of an artifical neural 
network for classfyng galaxes. In this configura- 
tion, the galaxy parameters are fed Into the input 
layer, and the T-type classfication appears as a 
single continuous output. The network is traned 
according to class~f~cation by a human expert. The 
hidden layer allows nonlinear boundaries in a 
complicated parameter space. 

ters are fed into the input layer, and the 
T-type classificatioll appears as a single con- 
tinuous output. The hidden layer allows 
nonlinear boul~daries in a comnlicated na- 
rarneter space. In the training phase, the 
free parameters of the network (weights) 
are determined bv least suuares minirniza- 
tion of the differeilce betwLen the calculat- 
ed and true (that is, the expert's) type. 
Other network configurations are possible, 
including multiple output nodes, which call 
provide Bayesian a posteriori probabil~ties 
for each class (14, 24). 

Pilot studies (14, 24) have had ANNs 
with 13 parameters classify about 5200 gal- 
axies from the ESO-LV catalog ( I  I ), cvhich 
illustrates that galaxies can he classified 
automatically, with an rms dispersioll of 2.1 
T-units between the ANN and the experts 
[Lauberts and Valentijn (1 1 )I .  However, 
hecause of the lack of quantitative measure 
of dispersion among human experts for 
comparison, it ems difficult for us to judge if 
the achieved success rate was satisfactory. 
We have now applied (25) the same tech- 
nique to our new APM sample, after ex- 
tracting significant features (ellipticity, sur- 
face brightness, lumillosity profile parame- 
ters, arms to disk ratio, collcelltration indi- 
ces, and arms parameters) from the images. 
We then trained the ANN on the T system 
(as in the network shown in Fig. 2 ) ,  feeding 
as input 13 parameters and allowing 5 nodes 
at the hidden layer, a 13 : 5: 1 configuration 
(other network configurations, such as 
13 : 13 : 1,  have yielded similar results). For 
each of the six individual exvert classifi- 
cations, the A N N  ems trained o n  three- 
quarters of the sample and tested on  the 
remaining fourth. Because the A N N  min- 
imization begins cvith a set of ralldorn 

weights, we repeated the training and test- 
ing 10 times, with different initial weights 
(typical internal scatter when networks 
with different initial random weights are 
used is ahout 0.1 to 0.3 lullits). The  same 
process was repeated for the other three- 
quarters of each set, resulting in 40 runs 
for each expert classification. 

The rrns dispersion (Eq. 1) between the 
ANN and each expert (Table 1) quantifies 
to what extent the human classificatioll call 
be reproduced by the computer algorithm. 
The rms disnersion varies between 1.9 and 
2.3 T-units over the six experts. This rela- 
tively small variation from one expert to 
another is not too surprising. The number of 
galaxies classified by each of the experts ems 
different (Table I ) ,  with bias toward face-on 
galaxies in some cases. A large rms dispersion 
rnav not necessarilv reflect illconsistencv in 
the expert's own classificatioll but rather a 
voorer fit between the human classification. 
the chosen parameters, and the rnodel (that 
is, the ANN).  A hetter agreernent, 1.8 T- 
units, is achieved when the ANN is trained 
and tested on  the mean tvne as deduced from , 
all available expert classificatiolls (after re- 
moving a few outliers). Comparison of Ta- 
bles 1 and 2 shows remarkable similarity in 
the dispersion between tcvo human experts 
and that between the ANN and exverts. In 
other words, our results indicate that the 
ANN can replicate an expert's classification 
of the APM sample as well as the colleagues 
or students of the expert. 

Figure 3 shows a n  example of the A N N  
versus mean exmrt  classification for 207 
galaxies, after training on  the remaining 

111 averag- 624 galaxies in the sample ( a g ~ '  
ing results from 10 runs with different 
initial random weights). Because all of the 

Fig. 3. The ANN versus mean 
expert T-type class~fication 
for 207 galaxies. The ANN 

- was trained on the remaining 
624 galaxies In the sample 
(with results averaged over 10 

- runs w~th d~fferent initial ran- 
" dom weights). The s o d  cir- 

cles ndlcate galaxles larger 
than the median dlameter of 
1.5 arc min, and the open cir- 
cles Indicate smaller galaxies. 

- 

-5 
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galaxies in our sample are larger than 1.2 
arc rnin in diameter. there is no obvious 
trend for worse classification for smaller 
diameters, althoutlh such a trend is exvect- 
ed for much smaller galaxies. There is also 
no dramatic trend with ellipticity. Of the 
831 galaxies classified by the ANN by the 
above procedure, 9% deviate from the 
"true" mean answer by at least three types. 
Most of them are very late types and ir- 
regulars (T  > 7 ) .  

Our comparison ~ndicates that although 
the T-svstem is convenient, the scatter be- 
tcveen chservers is not negligible. Caution is 
called for in assuming a universal frequency 
type distribution in comparison with lnodels 
and cvith high-redshift galaxies. The oh- 
served frequency distribution depends on the 
nlate material and on the human exvert. 
~ u t u r e  work will focus on supervised  ANN^, 
to preserve human experience in multidi- 
mensional classification (3, 5 ) ,  and on un- 
supervised algorithms (for example, by gen- 
eralizing principal cGmponent analysis to 
nonlinear mapping), to define a "new phys- 
ical Hubble sequence" without any prior hu- 
man classification. 
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Temperature Dependence of the 
Superconducting Gap Anisotropy in 

Bi2Sr2CaCu20,+, 
Jian Ma, C. Quitmann, R. J. Kelley, H. Berger, G. Margaritondo, 

M. Onellion* 

Detailed data on the momentum-resolved temperature dependence of the supercon- 
ducting gap of Bi2Sr2CaCu20,+, are presented, complemented by similar data on the 
intensity of the photoemission superconducting condensate spectral area. The gap an- 
isotropy between the r - M  and I?-X directions increases markedly with increasing tem- 
perature, contrary to what happens for conventional anisotropic-gap superconductors, 
such as lead. Specifically, the size of the superconducting gap along the T-X direction 
decreases to values indistinguishable from zero at temperatures for which the gap retains 
virtually full value along the r - M  direction. These data rule out the simplest type of d-wave 
order parameter. 

A n  "order parameter" describes the type of 
phase transition that occurs in a material 
system. The order parameter of high-tem- 
perature superconductors is of extreme cur- 
rent interest and has been investigated by 
several techniques, including angle-re- 
solved photoemission (1-4). Angle-re- 
solved photoemission has the advantage of 
directly investigating the momentum de- 
pendence of the gap. Already, results estab- 
lishing a marked anisotropy in the gap at 
low temperatures have ruled out an  isotro- 
pic s-wave symmetry order parameter (2-5). 

Our main result is that, contrarv to con- 
ventional anisotropic-gap superconductors 
such as lead (6), the gap anisotropy of ox- 
ygen-overdoped Bi2Sr2CaCu208+, increas- 
es with increasing temperature as one ap- 
proaches the superconducting transition 
temperature T,. We  estimated the size of 
the gap in two ways: using the BCS (Bard- 
een-Cooper-Schrieffer)-like lineshape (1 , 
7) computer code of Olson et al. (1) and 
also using the shift of the 50% point of the 
photoemission leading edge (2). The gap 
values obtained by the two methods agreed 
to better than 1.5 meV. Our results place 
stringent constraints on any theory of high- 
temperature superconductivity. 
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As a test of our experimental standards, 
we measured the angle-resolved photoemis- 
sion spectrum of a gold film deposited in 
situ (Fig. 1A);  the temperature of the film 
was 36 K. The 10 to 90% energy width of 
the Fermi-Dirac distribution function Fermi 
edge was 15 + 2 meV. Magnetic suscepti- 
bility measurements were also taken for an 
oxygen-overdoped Bi2Sr,CaCu208+, single 
crystal sample (Fig. 1B) as part of a test of 
sample quality. The 10 to 90% transition 
temperature width was 1.3 K. Our photo- 
emission measurements were performed in 
an ultrahigh-vacuum chamber with a base 
pressure of 6 x lo-" torr. The light source 
has the 4-m normal incidence monochro- 
mator at the Wisconsin Synchrotron Radi- 
ation Center. The electron energy analyzer 
we used was a 50-mm Vacuum Science 
Workshop hemispherical analyzer, mounted 
on a two-axis goniometer, with an accep- 
tance full angle of 2". The total energy 
resolution employed was 25 meV, slightly 
worse than the best obtainable. Samples 
were transferred from a load lock chamber 
and were cleaved in situ at 35 K. The 
sample holder rotated the sample about the 
surface normal, at low temperature, for pre- 
cision alignment with respect to the photon 
electric field. The s a m ~ l e  crvstal structure 
and orientation were determined by in situ 
low-energy electron diffraction (LEED). 
The sample temperature stability was + 1 K. 

For measurements of the temDerature 
dependence of the gap, we chose two loca- 
tions in the Brillouin zone where the super- 
conducting gap is large. These points are (i) 
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