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have only been related to anecdotal post- 
mortem descriptions of gross anatomical 
differences in the brains of eminent musi- 
cians compared to nonmusicians as well as 
pronounced interhemispheric asymmetry 
mainly of temporal lobe structures (8). In 
a n  unselected postmortem sample that es- 
tablished an  anatomical marker for cere- 
bral asymmetry, the size of a well-defined 
portion of the posterior superior temporal 
gyrus, termed the planum temporale (PT), 
was larger on the left side in the majority 
of brains (9). Asymmetry of the PT  has 

21. N. Stahl eta/., Science 263, 92 (1994). 22106) and the Office o f ' ~ i v a l  Research (~00014-  been increasingly accepted as a substrate 
22. C. Lutticken eta/., ibid., p. 69 (1994); A. Bonn~, D. A. 90-J1865). 

Frank, C. Schindler, M. E. Greenberg, i b d  262, of left hemisphere dominance for lan- 
1575 (1 993). 16 August 1994; accepted 15 November 1994 guage-related auditory processing because 

( i )  asymmetry of the PT  first appears in 
higher primates, suggesting a relation with 
the evolution of language (10); (ii) the 

In Vivo Evidence of Structural 
Brain Asymmetry in Musicians 

. . .  . 
left PT  coincides witK thYe center of ~ e r -  
nicke's speech area as identified by lesion 
studies (1 1);  (iii) macroscopic asymmetry 
of the PT  correlates with cytoarchitecton- 

Gottfried Schlaug,*Uutz Jancke, Yanxiong Huang, ic asymmetry of association cortices 

Helmuth Steinmetz* thought to play a role in* higher order 
auditory processing (12); and (iv) asym- 

Certain human talents, such as musical ability, have been associated with left-right metry of the PT is correlated with hand- 
differences in brain structure and function. In vivo magnetic resonance morphometry of edness, with left-handers being anatomi- 
the brain in musicians was used to measure the anatomical asymmetry of the planum cally more symmetrical (13). 
temporale, a brain area containing auditory association cortex and previously shown to Rightward deviation from the usual pat- 
be a marker of structural and functional asymmetry. Musicians with perfect pitch revealed tern of cerebral asymmetry may be associat- 
stronger leftward planum temporale asymmetry than nonmusicians or musicians without ed with increased giftedness for talents for 
perfect pitch. The results indicate that outstanding musical ability is associated with which the right hemisphere is assumed to 
increased leftward asymmetry of cortex subsewing mustc-related functions. be important (14). This proposed relation 

A number of studies have demonstrated 
that the left hemisphere of the brain is 
dominant in the production and compre- 
hension of language in the vast majority of 
persons (1). Similar attempts to localize 
musical functions have yielded conflicting 
data, mainly because studies of amusia- 
that is, impairment of musical skills as a 
result of cerebral lesions-have failed to 
reveal structural-functional maDs similar to  
those of language organization (2). This 
situation has now changed with the intro- " 

duction of positron emission tomography 
(PET) to measure regional cerebral blood 
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Germany. 
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flow and metabolism during the processing 
of verbal and nonverbal stimuli. ,Whereas 
left hemispheric activation sites are seen 
during phonological, lexical, or semantic 
language task performance (3), right hemi- 
spheric preponderances are found for me- 
lodic and pitch perception, at least in mu- 
sically nai've subjects (4). However, process- 

has been partially substantiated by connec- 
tions between nonrighthandedness, atypical 
visuospatial lateralization, spatial gifted- 
ness, and musical talent (15). We  have 
used high-resolution in vivo magnetic res- 
onance morphometry of the PT  as an  in- 
dex of lateral it^ in 30 healthy, right-hand- 
ed professional musicians and compared 
the results with those from nonmusicians 
matched for age, sex, and handedness 
(16-18). 

Table 1. Means ( iSD)  for age, degree of anatomical planum temporale asymmetry (SPT), and si-ze of left 
and right PT determined with in vivo magnetic resonance morphometry in healthy, right-handed musi- 
cians and nonmusicians. 

PT size (mm2) 
Subjects Age SPTt 

Left Right 

Musicians (n = 30) 26 (4) -0.36 (0.25)* 1063 (1 89) 750 (1 87) 
Perfect pitch (n = 11) 27 (5) -0.57 (0.21)** 1097 (202) 61 1 (1 05) 
No perfect pitch (n = 19) 26 (4) -0.23 (0.17) 1043 (1 83) 830 (1 78) 

Nonmusicians (n = 30) 26 (3) -0.23 (0.24) 896 (236) 736 (263) 

?Negative values indicate leftward asymmetry of the PT (761, *P = 0.028 compared to nonmusicians. **P < 
0.001 compared to musicians without perfect pitch (21). 
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Fig. 1. Brain surface projec- 
tions of the right and left pla- 
num temporale (PT) in a mu- 
sician with perfect pitch (up- 
per) and a nonmusician 
(lower). (Left) Views from the 
right; (middle) views from 
above with the left brain 
hemispheres to the reader's 
right; (right) views from the 
left. The images were recon- 
structed from stacks of 128 
contiguous sagittal magnet- 
ic resonance image slices 
where the PT had been 
highlighted on each slice. 
The 6 ! T  values are -0.77 
for the musician and -0.39 
for the nonmusician (76). 

We found that the PT was more lateral- 
ized to the left in musicians (P = 0.028). 
Possession of perfect pitch explained most 
of the variation in the degree of PT asym- 
metry among musicians (P < 0.001) (19- 
21). Musicians with perfect pitch showed 
stronger leftward PT asymmetry compared 
to other musicians, whereas musicians with- 
out perfect pitch did not. differ from con- 
trols (Table 1 and Fig. 1). 

Our finding of increased leftward PT 
asymmetry among musicians should be seen 
in the following context. First, PET has 
demonstrated that the posterior superior 
temporal region, including the PT, is in- 
volved in music perception (5). Second, in 
one postmortem myeloarchitectonic study 
of a musician with melody deafness after 
circumscribed brain injury, the lesion was 
centered on the left PT, sparing the primary 
auditory and inferior parietal cortex (22). 
Third, gross left-right asymmetry of the PT, 
as measured in our study, reflects cytoarchi- 
tectonic asymmetries of auditory associa- 
tion areas located on the PT (1 2). Thus, our 
morphometric findings in musicians may 
suggest that the functional capacity of cor- 
tex shown to subserve musical functions 
increases with leftward structural asymme- 
try of this neural system. This result lends 
anatomical support to behavioral and elec- 
trophysiological evidence of a difference in 
lateralization of musical processing between 
musicians and nonmusicians, with more 
left-lateralized representation in musicians 
(6, 7). Our data concur with the general 
concept that, because of time constraints of 
interhemispheric transfer, efficiency of neu- 
ronal assemblies is expected to increase 
with the number of elements clustered in 
one hemisphere (23). In fact, this principle 
may be the essence of hemispheric special- 
ization (23). 

Our study does not reveal the mecha- 
nism creating structural asymmetry. Left- 
ward PT asymmetry usually appears in 
the human fetus between the 29th and 

31st gestational week (24), so that prena- 
tal factors are likely to play a role. Never- 
theless, considering that the maturation 
of fiber tracts and intracortical neuropil, 
two presumed determinants of gyral shape 
(25), are still progressing by the age of 
seven (26), it remains uncertain whether 
gross anatomy may also be susceptible to 
some postnatal plastic change, such as 
in response to specific stimulation (20). 
Our study demonstrates that individual 
variability in cognitive performance can 
covary with features of external brain 
morphology. 
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mTECHNICAL COMMENTS stereocilia fusion. The extent of damage was 
variable at all survival times. A t  1 or 2 
weeks after gentamicin treatment, hair cell 

Mammalian Vestibular Hair Cell Regeneration injury was limited ~ r i m a r i l ~  to the striolar 
region in 10 of 16 animals examined by 

Bi rds  and mammals are born with a full 
complement of inner ear hair cells, which 
were thought to be irreversibly lost when 
damaged (1). It is now well known that 
birds have the capacity to regenerate hair 
cells in their auditory and vestibular or- 
gans after damage by acoustic trauma or 
ototoxic drugs (2) and that these new cells 
can mediate functional recovery (3). Re- 
cent studies by A. Forge e t  al. (4) and by 
M. E. Warchol e t  al. (5) suggest that the 
vestibular epithelium of the mature mam- 
malian inner ear may also have the ability 
to produce new hair cells by renewed mi- 
totic activity in response to aminoglyco- 
side injury in vivo (4)  and in vitro (5). 
However, these reports do not  provide 
convincing evidence that the DNA label- - 
ing, seen at a low frequency in vitro, is the 
source of the apparent recovery of hair cell 
apical surfaces observed in vivo. 

Our studv was undertaken to determine 
if cell division can be shown to give rise to 
new hair cells in normal mature mamma- 
lian vestibular epithelium or during the 
first 6 weeks after aminoglycoside ototox- 
icity. Three groups of young mature albino 
Hartley guinea pigs were used. The  exper- 

utricle (7): The  second group, killed after 
1 to 16 weeks, was used for scanning elec- 
tron microscopy (SEM) (8) in order to 
compare our results with those of Forge e t  

al. (4). In animals of the third group, an  
osmotic p,ump filled with [3H]thymidine 
was implanted under the skin of the back 
with its output leading to a cannula in- 
serted into the perilymphatic space before 
treatment with aminoglycoside (9). These 
animals wkre killed after 1 to 16 weeks 
(10). 
\ -, 

Hair cell damage and loss was evident in 
the light microsco~ic sections and SEM u 

analyses of tissue from gentamicin-treated 
animals (Fie. 1 ). Ex~erimental animals had . - .  
fewer hair cells than controls, particularly 
in the striolar region. Other signs or damage 
observed by light microscopy of SEM in- 
cluded nuclear pyknosis, nuclear swelling, 
vaccuolization, cytoplasmic extrusion, and 

S ~ M .  In three of the anlmals damage was 
observed over a larger area, extending from 
the striola toward the periphery of the or- 
gan. Complete destruction of the sensory 
hair cells was observed in the remaining 
three animals. Four weeks after gentamicin 
administratlon. one animal dis~laved hair 
cell damage ex;ending out from the striolar 
region; in the other animal blebbing and 
fusion of stereocilia were seen over the en- 
tire surface of the sensory epithelium. In the 
animal killed 4 months after gentamicin, 
the surface of the utricle continued to show 
damaged stereocilia bundles throughout the 
entire sensory epithelium. The  average 
length of the sensory epithelium and the 
linear support cell density remained con- 
stant between the control and experimental 
animals (Table 1)  ( 1  1 ). However, the linear 
hair cell densitv was 51 to 85% lower in 
experimental animals than controls (P < 
0.001). 

Table 1. Results of treatment with gentamicin on guinea pig utricle: Length of sensory epithelium, hair cell 
density, and support cell density. Measurements are averages (i. standard deviation). 

Sensory Hair cell Support cell 
Animal Treatment epithelium length density density 
number (weeks) ( x  0.1 mm) (per 0.1 mm) (per 0.1 mm) 

imental animals in each group were treat- 
ed with a single transtympanic injection of 94-01 1 7.2 (t2.0) 1.6 (i.0.7) 11.6 (i.4.6) 

94-1 3 1 9.3 (i.2.1)' 3.4 (i.0.8) 9.9 ( t3 .1)  
the ototoxic aminoglycoside, gentamicin, 93-42 1 7.2 ( t1 .6)  2.6 ( t  1.4) 10.4 (i.1.5) 
in the left ear (6). Animals in each control 94-06 4 7.4 (i.1 .5) 1.3 (51.5) 8.4 (i.1.5) 
group were given a n  identical volume of 94-05 6 8.7 ( t2 .0 )  1.6 (i.0.6) 7.1 (t1.6) 
0.9% saline. The  first group of animals was 93-55 6 7.2 ( t  1.9) 4.3 (20.8) 10.7 (t2.8) 

killed after 1 to 16 weeks and used for light 93-57 O* 7.4 (i. 1.6) 8.7 (i.1 .7) 12.6 (i.3.3) 
microscopic evaluation of damage pro- 93-38 6* 8.9 ( t2 .1)  6.6 (i.1 .9) 10.2 ( t  1.2) 

duced in the sensory epithelium of the 'Control group received no gentamicin. 
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