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Minor Groove Recognition of the Conserved GeU 
Pair at the Tetrahymena Ribozyme Reaction Site 

Scott A. Strobel and Thomas R. Cech* 

The guanine-uracil (GU) base pair that helps to define the 5'-splice site of group I introns 
is phylogenetically highly conserved. In such a wobble base pair, G makes two hy- 
drogen bonds with U in a geometry shifted from that of a canonical Watson-Crick pair. 
The contribution made by individual functional groups of the G.U pair in the context of 
the Tetrahymena ribozyme was examined by replacement of the G.U pair with synthetic 
base pairs that maintain a wobble configuration, but that systematically alter functional 
groups in the major and minor grooves of the duplex.-The substitutions demonstrate 
that the exocyclic amine of G, when presented on the minor groove surface by the 
wobble base pair conformation, contributes substantially (2 kilocalories.mole-') to 
binding by making a tertiary interaction with the ribozyme active site. It contributes 
additionally to transition state stabilization. The ribozyme active site also makes tertiary 
contacts with a tripod of 2'-hydroxyls on the minor groove surface of the splice site 
helix. This suggests that the ribozyme binds the duplex primarily in the minor groove. 
The alanyl aminoacyl transfer RNA (tRNA) synthetase recognizes the exocyclic amine 
of an invariant G.U pair and contacts a similar array of 2'-hydroxyls when binding the 
tRNAA'" acceptor stem, providing an unanticipated parallel between protein-RNA and 
RNA-RNA interactions. 

Docking  of the splice site helix of the 
Tetrahymena group I intron into the RNA 
active site is a model system for studying 
helix packing in the formation of RNA 
tertiary structure. The  splice site helix 
(also called' the P1 helix) contains the 
5'-exon paired to the internal guide se- 
quence (IGS) of the intron ( 1,  2 )  (Fig. 1 ). 
Following duplex formation, the helix is 
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docked into the ribozyme active site (3 ,  4) 
where the 5'-exon-intron boundary is 
cleaved by nucleophilic attack by exoge- 
nous guanosine (5). The  5'-splice site 
is defined by a U a t  the end of the 5'- 
exon; the U is paired with a G in the IGS 
(Fig. I ) .  While there is a general require- 
ment for sequence complementarity be- 
tween the 5'-exon and the IGS (1 ,  2,  6 ,  
7), the only specific sequence requirement 
is a t  the 5'-splice site where the G.U 
pair is highly conserved (7) .  The  evolu- 
tionary conservation of this pair provided 
the first indication that it  plays an  impor- 
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tant functional role for the ribozyme. 
Replacement of the G-U pair with oth- 

er combinations of natural bases has dem- 
onstrated that no  other pair is as reactive 
(8,  9) ,  though an  A-C pair retains a por- 
tion of the wild-type activity (8) .  Because 
a protonated form of the A.C pair can be 
drawn in a wobble configuration, it was 
postulated that the shape rather than spe- 
cific functional groups of the bases is im- 
portant for ribozyme activity (8) .  T o  fur- 
ther address the contribution of the G-U 
pair to  RNA folding, we have undertaken 
a systematic examination of the functional 
groups within the G.U pair. W e  substitut- 
ed synthetic bases for the G-U  pair (Fig. 2)  
in the context of the well-defined Tetra- 
hymena L-21 ScaI ribozyrne (3 ,  10-13), a 
form of the group I intron that cleaves 

u 
Fig. 1. Diagram of the splice site helix (capital 
letters) and catalytic core (solid lines) of the group 
I intron including the position numbers of specific 
bases within the helix (37). The phylogenetically 
conserved G.U base pair (box) is the site of base 
substitution, X-Y. 
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R N A  oligonucleotide substrates (5 ' -splice 
site analogs) in  trans. 

Full-length ribozymes were generated 
with diaminopurine riboside, inosine, pu- 
rine riboside, adenosine (A),  or 2'-deoxy- 
7-deazaguanosine (d7dG) in place of the 
conserved G at  position 22 (X in Fig. 1) 
(14-16). A truncated T7 R N A  poly- 
merase transcript (L-38 ScaI) was joined 
to a synthetic IGS oligonucleotide (17- 
nucleotide oligomer) containing the nu- 
cleoside substitution with the use of T4 
D N A  ligase (1 3,  17,  18). Analogs of the 
5'-exon (5'-GGCCCUCY-3 ' ) with C ,  
5-methyl-uridine or 5-methyl-isocytidine 
in  place of the conserved U ( Y  in  Fig. 1) 
were prepared by solid-phase oligoribo- 
nucleotide synthesis (1 6). Previous work 
has demonstrated that a ligated ribozyme 
containing the conserved G was as active 
as a ribozyme made entirely by transcrip- 
tion (13). Therefore, any difference in  
binding can be attributed to  the modifica- 
tions at  the G.U pair. 

The  stability of the interaction between 
the 5'-exon and the ribozyme was measured 
by a gel mobility-shift assay with a radiola- 
beled 5'-exon analog (1 1 ,  19). Two factors 
contribute to binding: (i) the strength of 
the base pairing interaction between the 
5'-exon and the IGS, and (ii) the formation 
of tertiary contacts between the splice site 
helix and the ribozyme active site. Modifi- 
cation of the G.U pair affects both of these 
terms. T o  assess the contributions of the 
two effects, we measured duplex stabilities 
(which are independent of the ribozyme) 
for pairing of the 5'-exon (GGCCCUCY) 
with an oligonucleotide IGS analog (XGA- 
GGG) (14). By subtracting the base pairing 
contribution from the total effect on  5'- 
exon binding to the ribozyme, we calculated 
modulations in tertiary interaction energy 
(Table 1). 

Substitution of the critical G with in- 
osine (I), a guanosine analog lacking the 

Fig. 2. (A) Proposed A Wobble pairs 
hydrogen bonding pat- 
tern and base configu- G.U 

N, exocyclic amine, reduced the equilib- 
rium dissociation constant for binding of 
the 5'-exon analog GGCCCUCU (Table 
1 )  bv a factor of 28 (2.0 kcalemol-'1. In a . , 
G.U wobble base pair, the exocyclic amine 
of G does not  participate in  a direct hy- 
drogen bonding interaction with U (Fig. 
2) (20, 21), and the base-pairing stabili- 
ties of the G.U and 1.U pairs are equiva- 
lent in  the sequence context of the splice 
site duplex (Table 1).  Thus, we suggest 
that the 2.0 kcal-mol-' reduction in bind- 
ing energy is due to a loss of a tertiary 
interaction between the exocyclic amine 
and the catalvtic core. 

W e  tested the assignment of this ener- 
gy to a specific contact rather than a 
global conformational change, such as un- 
docking of the splice site helix from the 
ribozyme core, by monitoring the energet- 
ic contribution of the 2'-OH at  position 
-3U (Fig. 3). W h e n  the duplex is docked 
into the active site, the 2 ' -OH of -3U 
forms a tertiarv interaction with a con- 
served base in  the catalytic core of the 
ribozyme (A302 in Fig. 1) (1 2). This inter- 
action contributes -1.4 kcal-mol-' to  
binding (see the G.U column in Fig. 3) .  
N o  favorable contribution is observed if 
the docking equilibrium is shifted toward 

a n  open complex (1 3 ,  19). T h e  observa- 
tion that  the 2'-OH at  -3U continues to 
make a strong tertiary contact in  the con- 
text of a n  1.U pair (Fig. 3 )  suggests that 
the splice site helix is in  a closed complex 
that has been weakened bv the loss of a 
tertiary contact to  the exocyclic amine. 

While the effect of the 1.U substitution is 
suggestive of a direct contact with the N, 
exocyclic amine, we wanted to test the con- 
tribution of this functional group in the 
context of other wobble base pairs. A wob- 
ble pair has been proposed to form between 
A and C (8) (Fig. 2). Compared to the G.U 
pair, an A-C wobble pair presents a different 
array of functional groups in the major 
eroove, forms a weaker base   air a t  neutral 
;H, a i d  lacks the minor groove N, exocy- 
clic amine (8, 22). As might be expected 
considering these changes, binding of the 
5'-exon analog GGCCCUCC by a ribozyme 
with A at  position 22 (A22) was weaker (3.7 
kcal-mol-') than that observed for mole- 
cules that form the wild-tv~e G.U   air. Cor- , . 
rection for the reduced base-pairing stability 
of the A.C pair (0.7 kcal.molp') revealed 
that 3.0 kcal-mol-' of tertiary interaction 
energy was lost by making this geometrically 
conservative substitution. The A-C muta- 
tion appears to shift the equilibrium toward 

Fig. 3. Tertiary contribution of the 2'-OH at position Docked Undocked 
-3U in the context of each base pair. Loss of a 
tertiary contribution is indicative of undocking of the c 2.5 *- 
splice site helix. Values represent the free energy of .2 2 

5 3 - 2 . 0  
binding the -3U 2'-deoxy analog GGCCCNCY mi- P .= 3'm'L 
nus that of the all-ribose analog. In each case the 1.5 

relative energetic contribution has been corrected by g o =  0 1.0 

subtracting 1 . I  kcal.mol-I to compensate for the re- .- k E C O . ~  
r 9 duction in duplex stability resulting from the single g- o,o 

deoxy substitution (19). Although the 2'-OH makes an 
-intermediate contribution in the context of a G-C pair, ? g o ? o v o o ? ? P  
a more complete characterization of the effect of this U ~ L - ~ Q & ' Q ~  

d 2  Q  Q ?  mutation shows the helix to be undocked (19). The Q  n a 
assignment of the helix as docked or undocked is Base pair 
supported by measurement of the equilibrium dissociation constant for GMP binding in the context of 
each base pair (13, 19, 32). 

B Watson-Crick pairs 

DAP,C H G-C DAP-U 
ration of wobble pairs. 
The upper and lower 
rows include wobble 
pairs with and without 
an N, exocyclic amine, H ,N- H ' H' 

N-H" 

respectively. Tertiary H J - ~  H.N.~ .N-H 

interaction energy is 
defined in Table 1 .  (B) 
Hydrogen bonding 
pattern and configura- 
tion of base pairs with a 
Watson-Crick pairing 
scheme. The upper 
and lower rows include 

Loss of tertiary 
interaction energy 2.0 

(kcal.mol-I) 1 

pairs with and without 1.U 
an N, exocyclic amine, 
respectively. 

I ',: 
H-N, 

I-C A-U 
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an undocked complex as evidenced by the 
failure of the 2'-OH at -3U to make a 
tertiary interaction (Fig. 3). These data im- 
ply that more than just a wobble configura- 
tion is important for folding of the splice site 
helix into the ribozyme active site. 

To generate a more stable wobble pair- 
ing partner for A, we synthesized the nu- 
cleoside 5-methyl-isocytidine (MeiC) and 
incorporated it in place of U in the oligo- 
nucleotide GGCCCUCMeC (1 4). Trans- 
position of the carbonyl and the amine of 
C allows MeiC to form two hydrogen bonds 
with A (Fig. 2), which results in a more 
stable wobble pair than A-C (Table 1).  
This improved base pairing stability is re- 
flected in tighter binding of the MeiC oli- 
gonucleotide by the A22 ribozyme. How- 
ever, the stabilization is at the level of 
base pairing rather than the recovery of a 
tertiary contact. The ASMeiC duplex re- 
mains in an open complex (Fig. 3) ,  having 

lost -2.8 kcal.mol-' in tertiary stabiliza- 
tion compared to the wild-type G-U pair 
(Table 1). 

To further assess the contribution of the 
amine to splice site helix docking, we rein- 
troduced the N, exocyclic amine into the 
A-C and AeMeiC pairs, using 2,h-diamino- 
purine riboside (DAP), an A analog with an 
N, exocyclic amine similar to G (Fig. 2). If 
the N, amino group forms a tertiary contact 
with the ribozyme active site as suggested by 
the I-U pair, then substitution of A with 
DAP should rescue the loss of tertiary bind- 
ing energy observed for the A.C and AeMeiC 
pairs. 

Ribozyme DAP22 bound the C and 
MeiC 5'-exon analogs 20-fold tighter than 
did the A22 ribozyme (Table 1).  This 1.8 
kcal-mol-' enhancement in binding is not 
due to improved base pairing stability. In 
the context of this duplex, AeMeiC and 
DAPeMeiC pairs are equally stable, as are 

Table 1. Stability of 5'-exon analog binding calculated relative to the G.U wobble pair. 

Loss in free energy (kcal.mol-') 

(X, Y )  base pair* Kd (nM)t Base Te~iary 
pairings interactions I I 

Wild-type G.U wobble pair 
G.U 

Wobble pairs with exocyclic amine 
G.MeU 0.05 2 0.01 0.0 -0.3 0.3 
DAP.MeiC 0.5 i 0.1 1.3 0.2 1 . I  
DAPC 1 .I i 0.4 1.9 0.6 1.3 
dG.U 1 0 i 5  3.2 0.3 2.9 
d7dG.U 52 2 4 4.2 0.7 3.5 

Wobble pairs without exocyclic amine 
1.U 1.4 2 0.5 2.0 0.0 2.0 
A.MeiC 9 2 3  -3.1 0.3 2.8 
A.C 25 2 4 3.7 0.7 3.0 

Watson-Crick pairs 
G-C 0.4 i 0.2 1.3 -1.3 2.6 
I-C 15 i 2 3.4 0.0 3.4 
DAP-U 15 i 4 3.4 -0.4 3.8 
A- U 1 6 i 3  3.4 0.0 3.4 

Other pairs 
G-MeiC 1 7 i 5  3.5 -0.4 3.9 
ILMeiC 54 2 9 4.2 0.4 3.8 
Pur-U 47 2 4 4.1 0.4 3.7 
Pur-C 130 i 30 4.7 0.8 3.9 
PwMeiC 100 i 40 4.5 0.5 4.0 

'Base pairs represent the 5'-terminal base X (position 22 in Fig. 1) of the L-21 Scai ribozyme pairing with the 3'-terminal 
base Y (position 1 )  of the 5'-exon analog GGCCCUCY. ?Equilibrium dissociation constants (K,,) for the ribozyme- 
5'-exon analog complex were measured at 30°C by native gel mobility-shift under conditions of excess ribozyme and 
a trace concentration (sKd/ l  0) of 5'-3ZP-labeled 5'-exon analog (1 1, 19). Each ribozyme was prefolded at 50°C for 20 
min in 50 mM tris (pH 7 4 ,  10 mM NaCI, 0.1 mM EDTA, 10 mM MgCI, and incubated with 5'-exon analog for 30 min to 
24 hours depending on the magnitude of the Kd being measured (19). In all cases doubling the incubation time led to no 
change in binding, ensuring that the ribozyme-5'-exon analog complex was at equilibrium. The fraction of 5'-exon 
analog bound (0) at each ribozyme concentration ([a) was quantitated by Phosphorlmager analysis. The Kd was 
calculated by a nonlinear least squares fit of the equation e = [E]/([a + K,). Each value represents the average of at least 
three independent measurements with errors reported as standard deviations. $Total free energy loss at 30°C 
[calculated as R71n(GY/KzU) where R and T equal 0.00198 kcal.mol-'.K-' and 303.15 K, respectively] relative to the 
total free energy for formation of a G.U pair. Positive numbers indicate overall binding is weaker than the G.U pair. Errors 
in this column are usually less than 0.1 kcal .m~l-~ and do not exceed 0.3 kcal.mol-'. §Free energy loss (or gain) 
attributable to differences in duplex stability between G.U and the other pairs. Duplex stabilities were measured by 
thermal denaturation analysis with the IGS analog XGAGGG and the 5'-exon analog GGCCCUCY (14, 19). Free energy 
values were calculated at 30°C with the values from Table 2 in (14). Positive numbers indicate that the duplex is weaker 
than the G.U pair. Errors in this column are usually less than 0.1 kcal.mol-' and do not exceed 0.2 kcal.mol-' 
(14). 1 1  Free energy attributable to loss of teriiary interactions between the splice site duplex and the ribozyme active 
site, calculated by subtracting the free energy of base pairing from the total relative free energy. Positive numbers 
indicate the extent to which tertiary interaction energy has been'lost relative to a G.U pair. Errors in this column are usually 
less than 0.2 kcal.mol-' and do not exceed 0.5 kcal.mol-l. 

A-C and DAP-C  airs. Therefore, restora- 
tion of the N, amino in the context of 
both the DAP-C and DAPeMeiC wobble 
pairs restores almost 2 kcal-mol-' of ter- 
tiary binding energy. Furthermore, on the 
basis of the tertiary contribution of the 
2'-OH at -3U, the DAP substitution re- 
stores docking of the splice site helix. 
Thus, in three different sequence con- 
texts-G.U. DAP-C. and DAPeMeiC-the 
N, amino ' contribltes appreciably (2 
kcal-mol-') to docking of the splice site 
duplex, strongly implicating it in a tertiary 
interaction with the active site. Although - 
the hydrogen bonding partner for the exo- 
cyclic amine is not known, photocross- 
linking experiments (23) and molecular 
modeling (7) have shown that the G at 
position 22 is located proximal to the 
internal loop between helices P4 and P5 
(Fig. 1)  (23). This loop contains several 
invariant adenosines that might be the 
phylogenetically conserved hydrogen 
bonding partner for the exocyclic amine 
(Fig. 1).  

In contrast to the minor groove, substi- 
tutions in the major groove had little ef- 
fect on docking (Fig. 4). Introduction of 
a methyl group at the 5-position of U 
(MeU) or substitution of the N, imino 
group of G with a cacbon did not substan- 
tially affect the energetics of splice site 
helix docking (24). Furthermore, equiva- 
lence in tertiary binding energy between 
the DAP-C and DAPeMeiC pairs suggests 
that the 0, of the pyrimidine ring does 
not contribute to tertiary stabilization. 
MeiC and C differ at this Dosition in hav- 
ing a carbonyl and an amine, respectively. 
Therefore, neither the major groove side 
of the purine nor any of the functional 
groups of the pyrimidine are likely to make 
energetically significant tertiary contacts 

Major groove NH, CH, 

CH NH, - -  N I 

H Minor groove 

Fig. 4. The G.U pair with the functional group 
substitutions characterized in this study (ar- 
rows). Among the functional groups modified, 
only the N, amino of G (octagon) appears to 
make a direct contribution that is energetically 
significant. The U does not appear to interact 
directly with the ribozyme. 
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with the ribozyme (25) (Fig. 4). 
The wobble configuration is important 

for presentation of the exocyclic amine on 
the minor groove surface. A considerable 
loss of tertiary binding energy is observed 
for the G-C (1 9) and DAP-U pairs (Table 
1 and Fig. 2B). Both pairs have an exocy- 
clic amine, but it is hydrogen-bonded in a 
Watson-Crick configuration. Deletion of 
the amine in these contexts does not re- 
sult in a substantial loss of tertiary binding 
energy (compare G-C to I-C and DAP-U 
to A-U, Table I ) ,  which suggests that the 
amine cannot make a strong tertiary inter- 
action if it is presented in a Watson-Crick 
geometry. Furthermore, these Watson- 

GYP concentration (pM) 

Fig. 5. Reaction rate constants for cleavage of 
5'-GGCCCUCUM-3' by the G22 and 122 
ribozymes as a function of GMP concentration at 
30°C. The slopes are equal to 15 x 1 O4 and 1.9 
X lo4 M-Imin-I for G22 and 122, respectively, 
and represent the second order rate constant 
(kcaJKm)G. Single-turnover reactions were car- 
ried out at 30°C as described (73) with saturating 
ribozyme concentration (200 nM such that [a 
>> e) and trace 32P-labeled oligonucleotide 
substrate. Under these conditions the second 
order rate constant (kcaJKm)G measures the rate 
of the reaction E.S + G + [E.S.G]$, the transition 
state for the chemical step (33). 

Crick pairs fail to dock into the active site, 
as measured by the nearly complete loss of 
tertiary interaction energy (23.5 
kcal-mol-', Table 1) and minimal contri- 
bution of the 2'-OH at -3U (Fig. 3). 
Similar effects are observed for base pairs 
with purine riboside (Pur) that form at 
most one hydrogen bond, including Pur-U, 
Pur-C, and PupMeiC, and for non-wobble 
pairs with MeiC, including G-MeiC and 
I-MeiC. 

We conclude that the G-U pair is high- 
ly conserved because it is the only combi- 
nation of natural bases in a wobble geom- 
etry with an N, exocyclic amine that is 
available for bonding in the minor groove. 
Although the U defines the 5'-splice site, 
none of its functional groups appears to be 
directly recognized by the ribozyme (Fig. 
4). Instead, its role is to hold the G in a 
wobble geometry, thus presenting the exo- 
cyclic amine of G for recognition. Consid- 
ering that highly conserved G-U pairs are 
present in a diversity of RNAs (26), the 
exocyclic amine of G might commonly 
serve as a minor groove contact for RNA 
folding and for duplex recognition by mac- 
romolecular RNA and protein ligands. 

In addition to a ground state tertiary 
interaction, the exocyclic amine also con- 
tributes to transition state stabilization. 
The 122 ribozyme cleaved the oligonucle- 
otide substrate GGCCCUCUAAAAA at 
one-eighth the rate of the wild-type G22 
ribozyme (Fig. 5) (27). Extension of these 
measurements to high guanosine mono- 
phosphate (GMP) concentration revealed 
that both ribozymes bound GMP with 
equal affinity [equilibrium dissociation 
constant for GMP (e) .J 80 pM], but 122 
reacted at one-sixth the rate of G22 in the 
chemical step (kc = 13 min-' for G22 and 

2.3 min-' for 122) (28). O n  the basis of 
the structure of a G-U wobble pair (21), 
the scissile phosphate is blocked from ac- 
cess to the N, amino by the intervening 
ribose, so the small transition state stabi- 
lization provided by the amine is likely to 
be indirect. For example, the stabilization 
could be mediated by its hydrogen bond- 
ing partner within the ribozyme, an or- 
dered water molecule (2 1 ), or a bound 
Mg2+ ion. 

Studies have implicated three specific 
2'-OH groups at nucleotide positions 
-3U, G22, and G25 as important tertiary 
contacts for splice site helix recognition 
by the ribozyme (12, 13). The N, exocy- 
clic amine and the 2'-OH groups are all 
located on the surface of the minor groove 
(Fig. 6A). Thus, the ribozyme uses molec- 
ular handles similar to those used by 
tRNAAla synthetase in binding its cognate 
tRNA acceptor stem (29) (Fig. 6B). It is 
especially notable that the catalytic ten- 

ters of the RNA and the protein both bind 
double-stranded RNA by recognizing an 
amino group presented on the minor 
groove surface by a G-U wobble pair and a 
subset of the surrounding 2'-OH groups. 
The exocyclic amine provides specificity, 
whereas the 2'-OH groups increase bind- 
ing energy. A similar structural conver- 
gence between protein and RNA binding 
was demonstrated when the P5abc RNA 
subdomain and the tyrosyl-tRNA syn- 
thetase were both shown to recognize the 
core of the group I intron (30). These 
examples suggest that proteins and RNA, 
two structurally dissimilar molecules, can 
adopt three-dimensional surfaces that 
function similarly in ligand binding. 
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Genetic Decreases in Atrial Natriuretic Peptide 
and Sal t-Sensi tive Hypertension 

Simon W. M. John, John H. Krege, Paula M. Oliver, 
John R. Hagaman, Jeffrey 5. Hodgin, Stephen C. Pang, 

T. Geoffrey Flynn, Oliver Smithies* 

To determine if defects in the atrial natriuretic peptide (ANP) system san cause hy- 
pertension, mice were generated with a disruption of the proANP gene. Homozygous 
mutants had no circulating or atrial ANP, and their blood pressures were elevated by 
8 to 23 millimeters of mercury when they were fed standard (0.5 percent sodium 
chloride) and intermediate (2 percent sodium chloride) salt diets. On standard salt diets, 
heterozygotes had normal amounts of circulating ANP and normal blood pressures. 
However, on high (8 percent sodium chloride) salt diets they were hypertensive, with 
blood pressures elevated by 27 millimeters of mercury. These results demonstrate that 
genetically-reduced production of ANP can lead to salt-sensitive hypertension. 

Essential hypertension is a heterogeneous 
disease in  which blood pressures are harm- 
fully high without overt cause; it-affects a 
large number of individuals in  many pop- 
ulations (1). Both genetic and environ- 
mental factors have been implicated in  its 
etiology. Several complex physiological 
systems affect blood pressure, including 
one that is mediated by the 28-amino acid 
atrial natriuretic peptide ( A N P )  (1,  2).  
A N P  is produced mainly in  the cardiac 
atria, where it is stored in dense granules 
as a large precursor (proANP), which is 
the major component of the granules (2). 
A N P  is the COOH-terminal portion of 
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0. Smithies, Department of Pathology, University of 
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the precursor. In  response to a n  increase In 
atrial distension, A N P  is released into the 
circulation and interacts with receptors in  
the vasculature, kidney, and adrenal 
glands. Although in pharmacological dos- 
es A N P  is known to lower blood pressure 
and promote salt excretion, its physiologic 
functions have not  been clearly defined 
and have not been proven (3).  

Because of the actions of ANP,  efforts 
have been made to determine whether 
genetic variants of the A N P  system are 
involved in the etiology of essential hy- 
pertension. For example, plasma A N P  
concentrations in  the children of two nor- 
motensive parents are higher than in chil- 
dren with a hypertensive parent, especially 
when the children are on  high salt intakes 
(4). Several polymorphisms have been 
identified in  the human proANP gene (5). 
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