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Described here is a method, based on Glover's taboo search for discrete functions, of 
solving the multiple minima problem for continuous functions. As demonstrated by 
model calculations, the algorithm avoids entrapment in local minima and continues the 
search to give a near-optimal final solution. Unlike other methods of global optimization, 
this procedure is generally applicable, easy to implement, derivative-free, and con- 
ceptually simple. 

M a n y  problems in practically all fields of 
science, technology, technical design, and 
econometrics involve global optimization- 
that is, the determination of the global 
minimum (or maximum) of a function of an  
arbitrary number of independent variables 
that may be continuous or discrete. Until 
relatively recently, global optimization re- 
ceived little attention (1, 2). It appears not 
to be possible to design methods that offer 
an  absolute guarantee of locating the global 
minimum for an arbitrarv function. and 
most "stochastic" methods provide an as- 
ymptotic guarantee. Simulated annealing 
(SA), the first such method to become 
widely known, was introduced in 1983 (3, 
4). Despite considerable recent progress, 
mainly in combinatorial applications (in- 
volving functions defined in a discrete do- 
main) (5-7), the general problem of global 
optimization remains unsolved. Efficient 
and reliable methods are thus urgently 
needed. 

In most cases of practical interest, global 
o~timization is verv difficult. This is be- 
cause of the omnipresence of local minima, 
the number of which tends to increase ex- 
ponentially with the size of the problem. 
Global o~timization arises in chemistrv in 
connection with the morphology of aggre- 
gates of atoms, conformational analysis, and 
the study of the geometry of interacting 
molecules (8). Conventional minimization 
techniques, which are time-consuming and 
tend to converge to whichever local mini- 
mum they first encounter, are of limited 
value in such cases (9,  10). The solution in 
these cases may not be the global minimum 
but a local minimum sensitive to the start- 
ing point. Also, these methods are unable 
to continue the search after a local mini- 
mum is reached. 

The principal requirement before any 
global optimization method is that it must 
be able to avoid entrapment in local mini- 
ma and continue the search to give a near- 
optimal solution whatever the initial con- 
ditions. SA (3, 4 ,  11) and the genetic 
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algorithm (GA)  (12), the most popular 
techniques in chemical applications, meet 
this requirement. We  suggest here an ap- 
proach that uses the concept of the taboo 
search (TS), a stochastic global optimiza- 
tion method originally developed by Glover 
(1 3 ,  14) for very large combinatorial opti- 
mization tasks. We  extended it to continu- 
ous-valued functions and investigated its 
potential for functions of many variables 
and many local minima. 

Our work has been inspired by the fact 
that TS is very general and conceptually 
much s im~ler  than either SA or GA. We  
believe that this in itself justifies its closer 
investigation. Further, it has been shown 
(13-1 6) that TS is superior to  SA both in 
the time required to obtain a solution and in 
the quality of the latter in solving the graph 
coloring and the traveling salesman prob- 
lems, the two most challenging combinato- 
rial optimization tasks. In addition, TS is a 
flexible framework of a variety of strategies 
originating from artificial intelligence and is 
therefore open to further improvement. 

We  define the global optimization prob- 
lem as follows: 

minimize f (s): s E S 

where f is the function to be optimized 
( the "objective function") and S is a set of 
feasible solutions ( the "solution space"), 
each represented by a point in S. Because 
maximizing f is equivalent to  minimizing 
-f, we limit ourselves to the problem of 
minimization. 

The TS uses a modification of "local 
search." which starts from some initial so- 
lution and attempts to find a better solu- 
tion. This becomes the new solution, and 
the process restarts from it. The procedure 
continues step by step until no  improve- 
ment is found to the current solution. 

The concepts of a "move" and "neigh- 
borhood" are common to most heuristic 
and algorithmic procedures ( 1 1 ). In TS, a 
move is a transition (st 4 s") from one trial 
solution (s t)  to  another (s"). The "move 
value" is the difference f(s") - f(st).  The 
move "improves" only if the move value is 
negative. A neighborhood N(s) of the so- 

lution s is the collection of solutions in S to 
which the algorithm can move from s in a 
single step. 

In an attempt to improve the current 
solution s*, TS considers the neighbors of 
s*-that is, the elements of N(s*). N(s*) is 
therefore the set of moves that mav be 
applied to s* at a particular step to produce 
a new solution. The complete procedure is a 
sequence of such moves, and the actual 
definitions of the neighborhood depend on 
the particular implementation and the na- 
ture of the problem. 

In order to ~ roduce  a new solution. the 
local search algorithm uses only improving 
moves. SA goes further: besides improving 
moves, it allows nonimproving moves with 
a certain acceptance probability under the 
control of the temperature parameter. Ta- 
boo search goes further still: A t  each itera- 
tive step it examines all moves in N(s*), 
both improving and nonimproving. In order 
to avoid a blind search. TS uses a ~rescribed 
problem-specific set of constrainis, known 
as "taboo conditions." which must be satis- 
fied for the move to 'be considered admissi- 
ble: otherwise. the move is taboo. 

A move remains taboo only during the 
"taboo period," a certain specified number 
of iterations. The "as~iration condition" is 
defined to enable certain "interesting" 
moves. If this is satisfied, a taboo move 
becomes admissible-that is, the algorithm 
is allowed to ignore the taboo status of a 
move temporarily ("strategic forgetting") 
provided that the move is judged to be 
interesting. The taboo condition and the 
aspiration condition together are a heuristic 
device, a kind of "learning procedure" that 
benefits from information acquired during 
previous iterations. Thus, TS performs an 
intelligent search of the solution space. 
From among the admissible moves at each 
iterative step, TS accepts the move with the 
lowest move value. This move might not 
lead to a better solution, but enables the 
algorithm to continue the search without 
becoming confounded by the absence of 
improving moves and to "climb out" of 
local minima. 

We  introduced a neiehborhood structure 
u 

in continuous space that we call the "con- 
ditional neiehborhood." The solution mace - 
S (hypercube in Rn, where n is a number of 
variables) is ~art i t ioned into disiunct cells 

, L 

by division of the coordinate intervals along 
the x,, x,, x3, . . . X, axes into PI, p,, pj, . . . 
pn parts. The problem-specific empirical 
partition parameter P = (p,, P2, B, . . . pn) 
determines a unique partition of S into 
cells, thus specifying the "address" of each 
cell. A t  each iterative step, we draw nq 
sample points from a uniform distribution 
over n, randomly chosen cells. These points 
are the neighbors of the current solution s*. 
The  size of the neighborhood N(s*) is ncns 
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and remains constant while the content of 
the neighborhood changes at each itera- 
tion. A t  each iterative step, TS accepts a 
nontaboo move with the lowest move val- 
ue, not necessarily to a cell that is a neigh- 
bor of the current solution. 

We  used two kinds of taboo moves. (i) 
A t  a particular iterative step, a move is 
considered taboo if it produces a solution 
that lies in the "taboo region" of the solu- " 

tion space S, consisting of cells visited dur- 
ing L preceding iterations. (ii) The move 
becomes taboo if it results in a deterioration 
of the objective function f greater than 
some specified value. 

The management of taboo moves as de- 
scribed by (i) is done by a "taboo list." This 
circular list is controlled by the parameter L, 
known as the size of the taboo list. which 
may be fixed or variable depending on the 
application or stage of the search. The taboo 
list is initially empty. A t  the first, second, 
and finallv the Lth iteration starting from " 

the current solution s f ,  a certain move sf + 
s" from cell C(s f )  to cell C(s") is accepted, 
producing a new solution s". The address of 
C(s") is then added to the taboo list, in 
sequence from positions 1 to L. A t  the (L + 
1)th iteration, the address of the current cell 
is added at the beginning of the list after its 
first (that is, oldest) element is removed and 
the others have been translated. 

The management of taboo moves as de- 
scribed by (ii) is done by keeping the track 
of the worst value off  throughout the com- 
outation and maintaining the "elite list" of " 
addresses of the most promising cells. For 
the initial step, we drew Ion sample points 
from a uniform distribution over the whole 
S, where n is the dimension of the problem. 
This sample provided the initial value of 
the worst value o f f  and the elite list of 10 
cells that contained the best values off.  

By discouraging repeated visits to recent- 
ly explored areas of S, the taboo condition 
stimulates the search toward solutions far 
from the current solution. The search is thus 
diversified to explore unvisited regions of S. 
However, by using the elite list, we intensi- 
fied the search in already visited, promising 
areas of the solution mace whenever an  
unacceptable deterioration of f  occurred. 

T o  implement the aspiration condition, 
we introduced the aspiration function AF, 
which keeps track of the best value of the 
objective function found so far. The value 
of AF depends on the move and the stage of 
the search and is computed for each taboo 
move sf  + s". If f(s") 5 AF, the aspiration 
condition is satisfied and the taboo status of 
the move canceled, so that the move is 
accepted. For the terminating condition, we 
used a specified number of successive itera- 
tions without any improvement. 

We  applied TS to a set of standard test 
functions listed in Table 1. This is the usual 

~rocedure for all ~rooosed o~timization random search IPRS). whereas the ~e r fo r -  
A ~ ,, 

methods; the test functions are discussed in mance figures for multistart and two differ- 
greater detail elsewhere (1. 2. 6). The Hart- ent SA algorithms were taken from the - . .  . . " 

man family of functions is defined as literature. The efficiency was quantified in 

where 0 5 x, 5 1, with j equal to any value 
up to n. Two particular tasks, known as H3 
and H6, correspond to n = 3 and n = 6. 
The values of c,, a,, and pi, are given else- 
where (17). The Siubert function 

i=5 

cos[(i + l ) x l  + i] 

( ~ = 5  I 

has ,760 local minima in the region - 10 5 

x,, X, 5 10, 18 of which are global with f(xl, 
x,) = - 186.7309. The Rastrigin function 
has 50 local minima, one of which is global. 

Using the test functions listed in Table 
1, we compared the performance of TS with 
the performance of other stochastic global 
optimization methods (Table 2). Numerical 
experiments were carried out with the pure 

terms of the number of f i c t i o n  evaluations 
necessary to find the global minimum. 

Pure random search (18) evaluates f(s) 
at a fixed number of points chosen random- 
ly from a uniform distribution over S. The 
smallest value of f(s) is then a candidate for 
the global minimum. Because the aim is to 
evaluate the efficiency of finding the global 
minimum, we implemented the PRS algo- 
rithm, which terminates once such point 
has been found with less than 1% error. The 
average results of four runs are listed in 
Table 3. The  multistart method is a natural 
extension of PRS. Local search is applied to 
every point in a sample drawn from a uni- 
form distribution over S, and the local min- 
imum with the lowest function value is 
considered to be the global minimum. 

The TS oarameters listed in Table 1 
were found during initial tests. The maxi- 
mum number of iterations allowed without 
improvement was 100. The results of con- 
tinuous TS optimization of test functions 
(Table 3 )  were the average outcome of 100 
independent runs. The reliability was excel- 
lent: in each case at least 90% of the runs 

Table 1. Standard test functions and TS parameters used for global optimization. 

Name of Function Dimension Partition 
function abbreviation (n ) parameter P (n,, 0,) 

L 

Goldstein-Price GP 2 (6, 6) (1, 6) 6 
Branin BR 2 (6, 6) (1, 6) 6 
Hartman H3 3 (4, 4,  4) (1 I 3) 10 
Martman H6 6 (2, 2 ,  2 ,  2 ,  2 ,  2) (1, 1 )  12 
Rastrigin R A 2 (6, 6) (1 I 6) 6 
Shubert SH 2 (6, 6)  (1, 6)  6 

Table 2. Global optimization methods used for performance analysis. 

Method Name Implementation Reference 

PRS Pure random search Anderssen (18) 
MS Multistart Rinnooy Kan and Timmer (20) 
SAl Simulated annealing based on Aluffi-Pentini ef a/. (20) 

stochastic differential equations 
SA2 Simulated annealing Dekkers and Aarts (20) 
TS Taboo search This work This work 

Table 3. Number of function evaluations in global optimization of six test functions defined in Table 1 by the 
different methods defined in Table 2. In PRS, the search is terminated when theglobal minimum is reached. 
Methods SA2 and TS use an additional 10n evaluations during initialization, where n is the dimension. 

Method GP BR H3 H6 R A SH 

PRS 5,125 4,850 5,280 18,090 5,964 6,700 
MS 4,400 1,600 2,500 6,000 - - 

SAI 5,439 2,700 3,416 3,975 - 241,215 
SA2 563 505 1,459 4,648 - 780* 
TS 486 492 508 2,845 540 727 

*A global minimum was not found in one of the four runs. 
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were successful (with the final result within 
2 to 3% of the global minimum). With this 
degree of precision, the global minimum in 
all our test functions was "isolated" from 
local minima, so that the solution could 
always be refined to any desired accuracy by 
any local optimizer. We  used the findmini- 
mum routine, a built-in local optimizer in 
Mathematica (Wolfram Research, Cham- 
paign, Illinois), which we believe to be a 
variant of the Newton-Raphson method. 

Together with SA and GA,  TS has been 
singled out as extremely promising for fu- 
ture practical applications (19). This work 
is a first step in applying the ideas and 
strategies of TS to continuous optimization. 
SA, GA,  and TS are all based on a combi- 
nation of combinatorial optimization and 
concepts from rather unlikely fields. Thus, 
SA is inspired by statistical physics and in 
essence amounts to a numerical simulation 
of the physical annealing of solids where, by 
slowly decreasing the temperature from the 
molten state. the svstem solidifies in a state 
of minimum energy. Genetic algorithm re- 
lies on the Darwinian principle of evolu- 
tion: The algorithm cross-breeds trial solu- 
tions and allows onlv the "fittest" to survive 
after several iterations. Taboo search stems 
from the general tenets of intelligent prob- 
lem-solving and is based on concepts from 
artificial intelligence. - 

Preliminary results for a standard set of 
test functions thus indicate that continuous 
TS is reliable and efficient, even more so 
than PRS and the multistart method. Ta- 
boo search reduces the amount of blind 
search that is characteristic of earlier tech- 
niques. The  results obtained with TS com- 
pare favorably with those obtained with 
SA. The  efficient o~timization of the Hart- 
man family of functions is particularly en- 
couraging, given the great physical impor- 
tance of the sums of Gaussian functions. 

Our approach to continuous global opti- 
mization has several attractive features: (i) 
TS avoids entraDment in local minima and 
continues the search to give a near-optimal 
final solution; (ii) it is problem-independent 
and can be applied to a wide range of tasks; 
(iii) it does not require any information 
about the derivatives of the function to be 
minimized; (iv) it is very easy to implement 
and the entire procedure occupies only a few 
lines of code; and (v) it is conceptually much 
sim~ler  than SA and GA. For instance, in- 
steid of using the metropolis algoriihm, 
choosing a cooling program, and specifying 
an annealing schedule (the initial and final 
temperatures, temperature decrement, and 
the length of the Markov chain), the ele- 
mentary version of TS (involving one taboo 
list and an aspiration function) requires only 
empirical control parameters: the size of the 
taboo list and a parameter defining the par- 
tition of the solution space. 

All the same, we are aware that no  
stochastic method can be guaranteed to 
solve the multiple minima problem in a 
finite number of steps, and any method may 
require long computing times. Also, just 
like SA, TS is a heuristic method and thus 
requires theoretical justification. Its appeal 
is largely intuitive, and little theoretical 
analysis is available. Making the method 
more effective is thus necessarily a matter of 
numerical experimentation. 

The algorithm allows vectorization, and 
parallel computing could reduce computing 
time, especially in problems of a higher 
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Simulation of Recent Global Temperature Trends 
Nicholas E. Graham 

Observations show that global average tropospheric temperatures have been rising 
during the past century, with the most recent portion of record showing a sharp rise since 
the mid-1970s. This study shows that the most recent portion of the global temperature 
record (1 970 to 1992) can be closely reproduced by atmospheric models forced only with 
observed ocean surface temperatures. In agreement with a diverse suite of controversial 
observational evidence from the past 40 years, the upward trend in simulated tropospheric 
temperatures is caused by an enhancement of the tropical hydrologic cycle driven by 
increasing tropical ocean temperatures. Although it is possible that the observed behavior 
is due to natural climate variability, there is disquieting similarity between these model 
results, observed climate trends in recent decades, and the early expressions of the 
climatic response to increased atmospheric carbon dioxide in numerical simulations. 

Observations indicate that global average 
surface air temperatures have been rising 
during the past century (1,  2). Whether this 
trend is real and if so what processes are 
responsible are questions that have been 
the subject of much discussion, particularly 
because increased tropospheric temperature 
is one of the most consistent results from 
simulations of the effects of increasing con- 
centrations of CO, and other greenhouse 
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gases (3). The recent portion of the global 
tropospheric temperature record is charac- 
terized by a sharp rise beginning during the 
mid-1970s, with the signal of the El Nifio- 
Southern Oscillation (ENSO) superim- 
posed on the lower frequency changes (4). 
The results presented here show that this 
most recent portion of global air tempera- 
ture record can be simulated closely by at- 
mospheric general circulation models 
(GCMs) forced only with observed global 
ocean temperatures. Analyses show that 
both the E N S 0  time scale changes and the 
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